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Abstract

In this paper we first give some properties of strictly quasi-Fredholm linear relations. Next we investigate the pertur-
bation of this class under finite rank operators.
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Introduction

Let X and Y be two Banach spaces. A linear relation T : D(T )→ 2Y is a mapping from a subspace D(T ) ⊂ X called
the domain of T , into the collection of nonempty subsets of Y such that T (αx+βy) = αT (x)+βT (y) for all nonzero α, β
scalars and x, y ∈ D(T ).We denote the set class of linear relations fromX to Y by LR(X,Y ) and abbreviate LR(X,X)

to LR(X). The graph of a relation T ∈ LR(X,Y ) is the subset G(T ) of X × Y defined by G(T ) =
{

(x, y)/ y ∈ Tx
}
.

Let T ∈ LR(X,Y ). The inverse of T is the linear relation T−1 given by G(T−1) =
{

(y, x)/ (x, y) ∈ G(T )
}
. The range

and kernel part of T , denoted R(T ) and N(T ) are defined respectively by R(T ) =
⋃

x∈D(T )

Tx and N(T ) = T−1(0). We

say that T is injective, if N(T ) = {0}, surjective if R(T ) = Y and bijective if T is both injective and surjective. If
M ⊂ X then the image of M under T is defined to be the set

T (M) =
⋃

x∈D(T )∩M

Tx

and if N ⊂ Y , then the inverse image of N under T is defined to be the set

T−1(N) :=
{
x ∈ D(T ) : Tx ∩N 6= ∅

}
.

In particular, for any y ∈ R(T )

T−1y :=
{
x ∈ D(T ) : y ∈ Tx

}
.

Let M be a subspace of X ′ (the dual space of X). We shall adopt the following notation

M⊥ := {x′ ∈ X ′ : x′(x) = 0 for all x ∈M}.

The adjoint T ∗ of T is defined by G(T ∗) = G(−T−1)⊥ ⊂ Y ′×X ′. This means that, (y′, x′) ∈ G(T ∗) ⊂ Y ′×X ′ if and
only if, for all (x, y) ∈ G(T ), y′y − x′x = 0.
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For a linear relation T ∈ LR(X), the root manifold N∞(T ) is defined by N∞(T ) =

∞⋃
n=1

N(Tn). Similarly, the root

manifold R∞(T ) is defined by R∞(T ) =

∞⋂
n=1

R(Tn). The singular chain manifold of T , denoted by Rc(T ), is defined

by Rc(T ) = N∞(T ) ∩R∞(T ) where R∞(T ) =

∞⋃
i=1

T i(0).

For a given closed subspace E of X, let QX
E or simply QE denoted the natural quotient map from X onto X/E. We

shall denote QX
T (0)

by QT . Clearly QTT is single valued. In fact, let QT y1, QT y2 ∈ QTTx. Then QT y1 − QT y2 ∈
QTTx − QTTx = QTT (0) = 0. For x ∈ D(T ), ‖ Tx ‖:=‖ QTTx ‖ and the norm of T is defined by ‖ T ‖:=‖ QTT ‖.
We note that this quantity is not a true norm since ‖ T ‖= 0 does not imply T = 0.
Let T and S ∈ LR(X). The linear relations T +S and TS are defined respectively by G(T +S) =

{
(x, y+z) ∈ X×X :

(x, y) ∈ G(T ) and (x, z) ∈ G(S)
}
and G(TS) =

{
(x, y) ∈ X×X : ∃z ∈ X such that (x, z) ∈ G(S) and (z, y) ∈ G(T )

}
.

We say that T commutes with S, if TS ⊆ ST , and T and S commute mutually if TS = ST . Let T ∈ LR(X,Y ). The
closure of T is the relation T defined by G(T ) = G(T ). The relation T is called closed if G(T ) is closed in X × Y or,
equivalently, T = T . We denote the class of all closed linear relations from X to Y by CR(X,Y ) and as useful we
write CR(X,X) := CR(X).

We say that T is continuous if for each neighborhood V in R(T ), T−1(V ) is neighborhood in D(T ) and open if its
inverse is continuous. Continuous everywhere defined linear relation on X is referred to be a bounded linear relation.
We denote by BR(X) the set of all bounded linear relations on X. The class of all bounded and closed linear relations
on X is denoted by BCR(X).

The resolvent set of T ∈ CR(X) is the set:

ρ(T ) = {λ ∈ C such that (T − λI) is bijective}.

The spectrum of T is defined by:
σ(T ) = C \ ρ(T ).

The kernels and the ranges of the iterates Tn, n ∈ N, of a linear relation T defined on a vector space X, form two
increasing and decreasing chains, respectively.

N(T 0) = {0} ⊆ N(T ) ⊆ N(T 2) ⊆ ...

R(T 0) = X ⊇ R(T ) ⊇ R(T 2)...

If T is a bounded linear relation on a Banach space X, then, for each nonnegative integer n, T induces a linear
transformation from the vector space R(Tn)/R(Tn+1) to the space R(Tn+1)/R(Tn+2). Let kn(T ) be the dimension
of the null space of the induced map. kn(T ) is called the difference sequence of T .
The aim goal of this paper is to give some properties of the class of strictly quasi-Fredholm linear relations on
Banach space X and to study the perturbation of this class which have been introduced for the first time in [6]. Let
T ∈ BCR(X) we say that T is strictly quasi-Fredholm relation of degree d ∈ N, if kn(T ) = 0 for all n ≥ d, kd−1(T ) 6= 0

and R(T d+1) is closed. We denote by Sqφ(d)(X), the set of all strictly quasi-Fredholm linear relations of degree d and
by Sqφ(X) the set of all strictly quasi-Fredholm linear relations for some degree d ∈ N. We first show that if T is a
strictly quasi-Fredholm linear relation of degree d then the adjoint T ∗ of T is a quasi-Fredholm linear operator of degree
d. After that we prove that the power of a strictly quasi-Fredholm linear relation is also strictly quasi-Fredholm linear
relation. Also we show that under certain conditions the product of two linear relations is strictly quasi-Fredholm
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linear relation if and only if each linear relation is strictly quasi-Fredholm.
In the literature the study of the problem of the stability of the quasi-Fredholm operators under finite rank operators
was done by M. Mbekhta and V. Muller. They proved in [17] that if T is a quasi-Fredholm operator of degree d ∈ N
and F is a bounded operator such that dim(R(F )) <∞, then T + F is also quasi-Fredholm operator of degree d.
In this work we extend the result of the stability of quasi-Fredholm operators under finite rank operator perturbations,
to the case of strictly quasi-Fredholm linear relations. Hence we prove that if we consider a strictly quasi-Fredholm
linear relation T of degree d with T d+1(0) is closed, and a finite rank operator F such that Tn(0) ⊂ N(F ) for all
n ∈ N, then T + F is also a strictly quasi-Fredholm linear relation of the same degree d.
To make the paper easily accessible, some results from the theory of linear relations due to Cross [11] are recalled in the
introduction. In Section 2 we study the adjoint and the power of strictly quasi-Fredholm linear relations. In section
3 we prove that under certain conditions the product of two linear relations is strictly quasi-Fredholm linear relation
if and only if each linear relation is strictly quasi-Fredholm. Section 4 is devoted to the study of the perturbation of
the class of strictly quasi-Fredholm linear relations under finite rank operators. Section 5 is dedicated to explain the
main conclusions of the article.

1 Adjoint and Power for Strictly Quasi-Fredholm Linear Relations

The aim goal of this section is to prove that if T is a strictly quasi-Fredholm linear relation such that ρ(T ) 6= ∅
then T ∗ is a quasi-Fredholm linear operator of degree d. After that we will show that the power of T is a strictly
quasi-Fredholm linear relation if and only if T is a strictly quasi-Fredholm linear relation.
Let’s start by recalling some definitions for the case of operators.

Definition 1.1 ([14], Definition 3.1) Let T be a closed linear operator on a Banach space X and let

∆(T ) = {n ∈ N,∀m ≥ n,R(Tn) ∩N(T ) = R(Tm) ∩N(T )}.

The degree of stable iteration dis(T ) of T is defined as dis(T ) = inf ∆(T ), where dis(T ) =∞ if ∆(T ) = ∅.

Definition 1.2 ([9], Definition 1.3.4) Let Y be a Banach space. We call a subset R of the Banach space Y a range
subspace if there exist a Banach space X and a bounded linear operator T from X to Y whose range is R.

Definition 1.3 ([14], Definition 3.2) Let T be a closed linear operator on a Banach space X. T is called a quasi-
Fredholm operator of degree d if there exists an integer d ∈ N such that:

1. dis(T ) = d,

2. R(Tn) is closed in X for all n ≥ d,

3. R(T ) +N(Tn) is closed in X for all n ≥ d.

Now we recall the definition of the difference sequence (kn(T ))n of a linear relation and the definition of strictly
quasi-Fredholm linear relation.
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Definition 1.4 If T is a bounded linear relation on a Banach space X, then, for each nonnegative integer n, T
induces a linear transformation from the vector space R(Tn)/R(Tn+1) to the space R(Tn+1)/R(Tn+2). Let kn(T ) be
the dimension of the null space of the induced map and k−1(T ) =∞.

Definition 1.5 ([6], Definition 4.1) Let X be a Banach space and T ∈ BCR(X). We say that T is strictly quasi-
Fredholm relation of degree d ∈ N, if kn(T ) = 0 for all n ≥ d, kd−1(T ) 6= 0 and R(T d+1) is closed. We denote by
Sqφ(d)(X), the set of all strictly quasi-Fredholm linear relations of degree d and by Sqφ(X) the set of all strictly
quasi-Fredholm linear relations for some degree d ∈ N.

Carrently, we collect some auxiliary results which we will need repeatedly in the sequel.

Lemma 1.1 ([19], Lemma 2.1 and Lemma 2.3) Let M and N be subspaces of a vector space X. Then
(i) M/M ∩N ' (M +N)/N .
(ii) Assume that N ⊂M then dimX/N = dimX/M + dimM/N.

Lemma 1.2 Let T be a closed linear relation in CR(X). Then for each nonnegative integer n we have,

R(Tn) ∩N(T )
/
R(Tn+1) ∩N(T ) ' N(Tn+1) +R(T )

/
N(Tn) +R(T ).

Proof

By Lemma 4.2 in [19], for all i, k ∈ N we have

N(T i+k)/
(
R(T k) +N(T i)

)
∩N(T i+k) ' R(T i) ∩N(T k)/R(T i+k) ∩N(T k).

Hence for k = 1 and i = n we get

N(Tn+1)/
(
R(T ) +N(Tn)

)
∩N(Tn+1) ' R(Tn) ∩N(T )/R(Tn+1) ∩N(T ). (1.1)

Now by Lemma 1.1, with M = N(Tn+1) and N = R(T ) +N(Tn) we have for all n ∈ N,

N(Tn+1)/
(
R(T ) +N(Tn)

)
∩N(Tn+1) ' N(Tn+1) +R(T )/R(T ) +N(Tn). (1.2)

Hence using (1.1) and (1.2) we get:

N(Tn+1) +R(T )/R(T ) +N(Tn) ' R(Tn) ∩N(T )/R(Tn+1) ∩N(T ).

2

Lemma 1.3 If T is a strictly quasi-Fredholm linear relation of degree d such that ρ(T ) 6= ∅, then for all n ≥ d we
have

R(Tn)⊥ +N(T )⊥ = (R(Tn) ∩N(T ))⊥.
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Proof

As T is a strictly quasi-Fredholm linear relation of degree d then by Proposition 4.2 in [6], R(Tn) is closed for all
n ≥ d. So in particular, R(Tn+1) is closed. Then QT (R(Tn+1)) wich is equal to R(Tn+1)/T (0) is also closed. On the
other hand we have :

(QTT )−1(QT (R(Tn+1))) = T−1(R(Tn+1) + T (0)) = R(Tn) +N(T ).

Thus, as QTT is a bounded operator and QT (R(Tn+1)) is closed, we conclude that R(Tn) + N(T ) is closed. Now,
since N(T ) and R(Tn) are closed and R(Tn) +N(T ) is also closed then by Theorem III.3.9 in [11], it follows that

R(Tn)⊥ +N(T )⊥ = (R(Tn) ∩N(T ))⊥, for all n ≥ d.

2

Now, we are in the position to give the main theorem of this subsection.

Theorem 1.1 Let T ∈ BCR(X) be such that ρ(T ) 6= ∅. If T is a strictly quasi-Fredholm linear relation of degree d
then T ∗ is a quasi-Fredholm linear operator of degree d.

Proof

First, we will prove that T ∗d is a quasi-Fredholm linear operator of degree 1. First, we show that R(T ∗nd) is closed
for all n ≥ 1. As T is closed and ρ(T ) 6= ∅ then Tn is also closed for all n ≥ 1. So by Proposition 4.2 in [6],we have
R(Tnd) is closed for all n ≥ 1. Therefore by Theorem 3.3.8 in [20], R(T ∗ nd) is closed.
Now, we prove that R(T ∗d) + N(T ∗nd) is closed for all n ≥ 1. Since T is strictly quasi-Fredholm of degree d, then
by Proposition 4.2 in [6], we have N(T d) ∩ R(Tnd) is closed for all n ≥ 1. Hence

(
N(T d) ∩ R(Tnd)

)⊥ is closed.
Therefore by Lemma 1.3, we get N(T d)⊥ +R(Tnd)⊥ is closed for all n ≥ 1. So by Proposition III.1.4 in [11], we have
R(T ∗d) +N(T ∗nd) is closed for all n ≥ 1.
It remains now to prove that dis(T ∗d) = 1. By Proposition III.1.4 in [11], we have R(Tnd)⊥ = N(T ∗nd) and
N(T d)⊥ = R(T ∗d). Now, by Lemma 1.3, we get for all n ≥ 1

N(T ∗d(n+1)) +R(T ∗d) = R(T d(n+1))⊥ +N(T d)⊥

= (R(T d(n+1)) ∩N(T d))⊥

= (R(Tnd) ∩N(T d))⊥, (since kj(T ) = 0, j ≥ d)

= R(Tnd)⊥ +N(T d)⊥

= N(T ∗nd) +R(T ∗d).

Using Lemma 1.2, it follows that, for all n ≥ 1,

dim
(
R(T ∗nd) ∩N(T ∗d)

)/(
R(T ∗d(n+1)) ∩N(T ∗d)

)
= 0.

Therefore,
R(T ∗nd) ∩N(T ∗d) = R(T ∗d(n+1)) ∩N(T ∗d) for all n ≥ 1.

This implies that
dis(T ∗d) = inf ∆(T ∗d) = 1.
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Consequently, T ∗d is a quasi-Fredholm linear operator of degree 1.
Now, we show that T ∗ is quasi-Fredholm of degree d. First we prove that dis(T ∗) = d. As T ∗d is quasi-Fredholm of
degree 1 then dis(T ∗d) = 1 wish implies that

R(T ∗d) ∩N(T ∗d) = R(T ∗nd) ∩N(T ∗d), for all n ≥ 1.

Hence

N(T ∗) ∩R(T ∗d) ∩N(T ∗d) = N(T ∗) ∩R(T ∗nd) ∩N(T ∗d), for all n ≥ 1.

It follows that,
N(T ∗) ∩R(T ∗d) = N(T ∗) ∩R(T ∗j), for all j ≥ d.

Therefore, dis(T ∗) = d.
On the other hand, as we have R(T ∗jd) is closed for all j ≥ 1 it follows that R(T ∗n) is closed for all n ≥ d. It remain
to prove that R(T ∗) +N(T ∗n) is closed for all n ≥ d. Let (yp +xp) ∈ (R(T ∗) +N(T ∗n)) such that yp +xp −→ z, with


yp ∈ R(T ∗)

and
xp ∈ N(T ∗n)

which implies that


yp = T ∗(tp)

and
T ∗n(xp) = 0.

As ρ(T ∗) 6= ∅ then ρ(T ∗d) 6= ∅ and hence there exists β ∈ ρ(T ∗) such that

(T ∗ − βI + βI)d−1 =

d−1∑
k=0

ck(T ∗ − βI)k

with (ck)k are constants. Set that S = (T ∗ − βI)−1, hence we have

T ∗d−1Sd−1 =

d−1∑
k=0

ck(T ∗ − βI)k(T ∗ − βI)−d+1

=

d−1∑
k=0

ck(T ∗ − βI)−(d−1−k)

=

d−1∑
k=0

ckS
d−1−k is bounded.

Therefore,
T ∗d−1Sd−1(T ∗(tp) + xp) −→ T ∗d−1Sd−1(z).

It’s clear that, 
T ∗d−1Sd−1(T ∗(tp)) ∈ R(T ∗d)

and
T ∗d−1Sd−1(xp) ∈ N(T ∗) ⊂ N(T ∗d) ⊂ N(T ∗n).

So
T ∗d−1Sd−1(T ∗(tp)) + T ∗d−1Sd−1(xp) ∈ R(T ∗d) +N(T ∗n).

Since, R(T ∗d) +N(T ∗n) is closed therefore

T ∗d−1Sd−1(z) ∈ R(T ∗d) +N(T ∗n).
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So, there exist t ∈ D(T ∗) and x ∈ N(T ∗n), such that,

T ∗d−1Sd−1(z) = T ∗d(t) + x.

Hence
T ∗d−1(Sd−1(z)− T ∗(t)) = x ∈ N(T ∗n).

Thus,
Sd−1(z)− T ∗(t) ∈ T ∗−(d−1)(N(T ∗n)) = N(T ∗n+d−1).

As n ∈ ∆(T ∗) then by Proposition 3.1.1 in [15], we have N(T ∗n+d−1) ⊂ R(T ∗) +N(T ∗n).
Therefore Sn−1(z) ∈ R(T ∗) +N(T ∗n). Since S is invertible then z ∈ R(T ∗) +N(T ∗n). It follows that R(T ∗) +N(T ∗n)

is closed. Consequently T ∗ is a quasi-Fredholm linear operator. 2

In the following we will show that the power of a linear relation T such that ρ(T ) 6= ∅ is a strictly quasi-Fredholm
linear relation if and only if T is a strictly quasi-Fredholm. To do this we need the following lemma.

Lemma 1.4 ( [12], Theorem 2.4) Let M and N be two range subspaces of a Banach space X such that M +N and
M ∩N are closed. Then M and N are closed.

Theorem 1.2 Let X be a Banach space and T ∈ BCR(X) be such that ρ(T ) 6= ∅ , then for all m ≥ 1 and p ≥ 1, we
have

T ∈ Sqφ(mp)(X) if and only if Tm ∈ Sqφ(p)(X).

Proof

Let T ∈ Sqφ(mp)(X). First, we show that , kj(Tm) = 0 for all j ≥ p. As kn(T ) = 0 for all n ≥ mp, then

N(T ) ∩R(Tmp) = N(T ) ∩R(Tn), for all n ≥ mp.

By Lemma 2.2 in [8], we have

N(T j) ∩R(Tmp) ⊂
∞⋂

n=0

R(Tn) for j ≥ 1.

Hence for all n ≥ p and j = m, we have

N(Tm) ∩R(Tmp) ⊂ R(Tmn).

Then
N(Tm) ∩R(Tmp) ⊂ N(Tm) ∩R(Tmn), for all n ≥ p.

And as
N(Tm) ∩R(Tmn) ⊂ N(Tm) ∩R(Tmp), for all n ≥ p,

it follows that,
N(Tm) ∩R(Tmn) = N(Tm) ∩R(Tmp), for all n ≥ p.

Therefore, kj(Tm) = 0 for all j ≥ p. Now we show that R((Tm)p+1) is closed. Since ρ(T ) 6= ∅ so by Proposition 4.2
in [6], we have R(Tmp+m) is closed. Thus Tm ∈ Sqφ(p)(X).
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Conversely, let T ∈ BCR(X) be such that Tm ∈ Sqφ(p)(X). First we will show that kn(T ) = 0 for all n ≥ mp. As
kn(Tm) = 0 for all n ≥ p it follows that,

N(Tm) ∩R(Tmn) = N(Tm) ∩R(Tmp), for all n ≥ p.

Hence,
N(T ) ∩N(Tm) ∩R(Tmn) = N(T ) ∩N(Tm) ∩R(Tmp), for all n ≥ p.

Thus,
N(T ) ∩R(Tmn) = N(T ) ∩R(Tmp), for all n ≥ p.

Therefore,
N(T ) ∩R(Tn) = N(T ) ∩R(Tmp), for all n ≥ mp.

Consequently, kn(T ) = 0 for all n ≥ mp.
It remains to show that R(Tmp+1) is closed. First we prove that:

N(T j) ∩R(Tmp) = N(T j) ∩R(Tmp+1), for all j ∈ N.

For j = 1 as kn(T ) = 0, n ≥ mp we have N(T ) ∩R(Tmp) = N(T ) ∩R(Tmp+1). Suppose that

N(T j) ∩R(Tmp) = N(T j) ∩R(Tmp+1),

and we will show that
N(T j+1) ∩R(Tmp) = N(T j+1) ∩R(Tmp+1).

As
N(T j+1) ∩R(Tmp+1) ⊂ N(T j+1) ∩R(Tmp),

it is sufficient to show that
N(T j+1) ∩R(Tmp) ⊂ N(T j+1) ∩R(Tmp+1).

Since kn(T ) = 0 for all n ≥ mp, then by Lemma 2.2 in [8], we have

N(T j) ∩R(Tmp) ⊂
∞⋂

n=0

R(Tn) for all j ≥ 1.

Hence N(T j+1) ∩R(Tmp) ⊂ N(T j+1) ∩R(Tmp+1). Thus

N(T j) ∩R(Tmp) = N(T j) ∩R(Tmp+1) for all j ∈ N.

Then for j = m− 1 we have
N(Tm−1) ∩R(Tmp) = N(Tm−1) ∩R(Tmp+1).

Since Tm ∈ Sqφ(p)(X) it follows by Proposition 4.2 in [6], that R(Tmp) is closed and as N(Tm−1) is closed then
R(Tmp) ∩N(Tm−1) is closed. Thus N(Tm−1) ∩ R(Tmp+1) is also closed. On the other hand as R(Tmp+m) is closed
so by Lemma 2.5 in [6], we have R(Tmp+1) + N(Tm−1) is also closed. Using Lemma 1.4 we get R(Tmp+1) is closed.
Consequently, T ∈ Sqφ(mp)(X). 2
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2 Product of Strictly Quasi-Fredholm Linear Relations

In this section, we will show that under certain conditions the product of two linear relations is strictly quasi-Fredholm
linear relation if and only if each linear relation is strictly quasi-Fredholm. We start this subsection by the following
technical lemma.

Lemma 2.1 Let F,G1 and G2 be three subspaces of a vector space X. Then

dim
(
G1 + F

/
G2 + F

)
≤ dim

(
G1

/
G2

)
.

Proof

Let
(
x1, ..., xm

)
be an independent family of G1 + F

/
G2 + F . Then: xi = xi +G2 + F with xi ∈ G1 + F . Then,

for all i ∈
{

1, ..., m
}
, xi = xi1 + xiF with xi1 ∈ G1 and xiF ∈ F .

We consider the family
(
x11, ..., xm1

)
of G1. We prove that

(
x̃11, ..., x̃m1

)
is independent in G1

/
G2. Indeed, let

α1x̃11 + · · ·+ αmx̃m1 = 0̃, then α1x11 + · · ·+ αmxm1 ∈ G2. So,

α1x1 + · · ·+ αmxm = α1x1 + · · ·+ αmxm

= α1x1 + · · ·+ αmxm +G2 + F

=

m∑
i=1

αixi1 +

m∑
i=1

αixiF +G2 + F.

Then, α1x1 + · · · + αmxm = 0. So α1 = α2 = · · · = αm = 0, and hence the family
(
x̃11, ..., x̃m1

)
is independent in

G1

/
G2. 2

Lemma 2.2 (Proposition 3.4, [8]) Let X be a Banach space and let A,B,C and D ∈ BR(X). Suppose that C
commutes with A and B,D commutes with A, B and C, A and B commute mutually and I ⊂ AC +DB. Then
i) If A−1 commutes with B, then for every n, and R(AnBn) = R(An) ∩R(Bn).
ii) For every n ∈ N, we have N(An) ⊂ R(Bn) and N(Bn) ⊂ R(An).

Lemma 2.3 (Proposition 3.6, [8]) Let X be a Banach space and let A,B,C and D ∈ BCR(X). Suppose that C
commutes with A and B,D commutes with A, B and C, A and B commute mutually and I ⊂ AC +DB. Let n ≥ 0.

i) If R(A∗) and R(B∗) are closed, then N(AB) = N(A) +N(B).

ii) Furthermore, if A−1 commutes with B, then N((AB)n) = N(An) +N(Bn).

From the previous lemmas we have the following result:

Proposition 2.1 Let X be a Banach space and let A, B, C, D ∈ BR(X) be such that C commutes with A and B, D
commutes with A, B and C , A and B commute mutually and I ⊂ AC +BD and A.

−1 commutes with B. . Then

sup(kn(A), kn(B)) ≤ kn(AB) ≤ kn(A) + kn(B).

Proof
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We prove that kn(A) ≤ kn(AB). If x1, ....., xm ∈ R(An) ∩N(A), where m > kn(AB), then Bnxi ⊂ R(AnBn) and
Bnxi ⊂ N(A) +Bn(0). In fact, let xi ∈ N(A). Then

A. xi = A(0)⇒ BnAxi = BnA(0)⇒ ABnxi = ABn(0).

So A−1ABnxi = A−1ABn(0). It follows that Bnxi +N(A) = Bn(0) +N(A).

Thus,
Bnxi ⊂ N(A) +Bn(0).

Then, Bnxi ⊂ R(AnBn)∩
(
N(A) +Bn(0)

)
⊂ R(AnBn)∩

(
N(AB) +Bn(0)

)
, since N(A) ⊂ N(AB). Thus by Lemma

22.2 in [18], it follows that for i ∈ {1, ...,m}, Bnxi ⊂ Bn(0) +
(
R(AnBn) ∩ N(AB)

)
. Let, for all i ∈ {1, ...,m}, yi ∈

Bnxi. Then we have for all i ∈ {1, ...,m}, yi ∈ Bn(0) +
(
R(AnBn) ∩N(AB)

)
. Using Lemma 2.1, we get:

dim
([
Bn(0) +R(AnBn) ∩N(AB)

]/[
Bn(0) +R(An+1Bn+1) ∩N(AB)

])
≤ kn(AB).

Since m ≥ kn(AB), we can deduce that there exist α1, ..., αm non trivial such that

α1y1 + α2y2 + ....+ αmym ∈ Bn(0) +R(An+1Bn+1) ∩N(AB).

On other hand we have:
R(An+1Bn+1) = Bn

(
BAn+1(X)

)
= Bn

(
An+1B(X)

)
⊂ Bn(An+1X)

⊂ Bn(R(An+1)).

Now, it is clear that Bn(0) ⊂ Bn(R(An+1)), so
m∑
i=1

αiyi ∈ Bn(R(An+1)). Furthermore, since
m∑
i=1

αiyi ∈ Bn
( m∑
i=1

αixi
)

then Bn
( m∑
i=1

αixi
)
∩ Bn(R(An+1)) 6= ∅ and so,

m∑
i=1

αixi ∈ R(An+1) + N(Bn) ⊂ R(An+1). Hence,
m∑
i=1

αixi ∈

R(An+1) ∩N(A), and so kn(A) ≤ kn(AB).

Now, we will prove the second inequality.

If kn(A) + kn(B) = ∞, then there is nothing to prove. We consider the case where kn(A) + kn(B) is finite. Let
x1, ..., xm ∈ R(AnBn) ∩N(AB), where m > kn(A) + kn(B). We have

R(AnBn) ∩N(AB) = R(An) ∩N(A) +R(Bn) ∩N(B), ( see Lemma 2.3).

Then there exist yi ∈ R(An) ∩N(A) and zi ∈ R(Bn) ∩N(B), such that xi = yi + zi.
Consider the space R(An) ∩N(A)⊕R(Bn) ∩N(B). We have

dim
([
R(An) ∩N(A)⊕R(Bn) ∩N(B)

]/[
R(An+1) ∩N(A)⊕R(Bn+1) ∩N(B)

])
= kn(A) + kn(B).

Then, there exists a non-trivial combination such that
m∑
i=1

αi(yi + zi) ∈ R(An+1) ∩N(A)⊕R(Bn+1) ∩N(B).

Hence,
m∑
i=1

αixi ∈ R(An+1Bn+1) ∩N(AB) and so kn(AB) ≤ kn(A) + kn(B). 2

We are now ready to state our main theorem.
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Theorem 2.1 Let A,B,C,D ∈ BCR(X) be such that ρ(A) 6= ∅, ρ(B) 6= ∅ and C commutes with A and B,D

commutes with A,B and C,A and B commute mutually and I ⊂ AC + BD and A−1 commutes with B. Then
AB ∈ Sqφ(d)(X) if and only if A ∈ Sqφ(d)(X) and B ∈ Sqφ(d)(X).

Proof

If A,B ∈ Sqφ(d)(X) then kn(A) = 0 and kn(B) = 0 for all n ≥ d. Then by Proposition 2.1, we have kn(AB) = 0,
for all n ≥ d. So to prove that AB ∈ Sqφ(d)(X), it remains to show that R((AB)d+1) is closed. By Lemma 2.2, we
have

R((AB)d+1) = R(Ad+1Bd+1) = R(Ad+1) ∩R(Bd+1).

As R(Ad+1) and R(Bd+1) are closed it follows that R((AB)d+1) is closed. Hence AB ∈ Sqφ(d)(X).
Now, If AB ∈ Sqφ(d)(X), we will prove that A ∈ Sqφ(d)(X) and B ∈ Sqφ(d)(X).
First, we show that A ∈ Sqφ(d)(X). As AB ∈ Sqφ(d)(X) so kn(AB) = 0 for all n ≥ d. Then by Proposition 2.1, we
have kn(A) = 0 for all n ≥ d.
It remains to prove that R(Ad+1) is closed. We consider the sequence (xn)n ∈ R(Ad+1) such that xn → x. It suffices
to show that x ∈ R(Ad+1). Let γn ∈ Bd+1(xn) and γ ∈ Bd+1(x). We have γn − γ ∈ Bd+1(xn − x). Then,

d(γn − γ, Bd+1(0)) = ‖ Bd+1(xn − x) ‖ ≤ ‖ Bd+1 ‖ ‖ xn − x ‖−→ 0.

Then there exists tn ∈ Bd+1(0) such that
‖ γn − tn − γ ‖→ 0.

Let αn = γn − tn ∈ Bd+1(xn)− Bd+1(0) = Bd+1(xn) and αn → γ ∈ Bd+1(x) and as αn ∈ R(AB)d+1 which is closed
therefore γ ∈ R(AB)d+1.
This implies that

x ∈ (Bd+1)−1(γ) ⊂ (Bd+1)−1(R(AB)d+1) ⊂ N(Bd+1) +R(Ad+1).

Since by Lemma 2.2, we have N(Bd+1) ⊂ R(Ad+1) then we get x ∈ R(Ad+1). It follows that, R(Ad+1) is closed.
Consequently, A ∈ Sqφ(d)(X). By the same way we prove that B ∈ Sqφ(d)(X). 2

3 Perturbation of Strictly Quasi-Fredholm Linear Relations

In this section we will study the perturbation of strictly quasi-Fredholm linear relations under finite rank operators.
First, we give these next lemmas that will be required in the proof of the main result of this section.
First, we recall Proposition 1.1.6 in [7]

Lemma 3.1 ([7], Proposition 1.1.6) Let T ∈ LR(Y,X) and S,R ∈ LR(X,Z). If T (0) ⊂ N(S) or T (0) ⊂ N(R), then

(R+ S)T = RT + ST.

Lemma 3.2 Let T ∈ BCR(X) and F be a bounded operator such that R∞(T ) ⊂ N(F ). Then

(T + F )n(0) = Tn(0), for all n ∈ N∗. (3.1)
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Proof
We prove (3.1) by induction on n. For n = 1 we check that (T + F )(0) = T (0). Suppose that (3.1) is true for some
integer n and we prove this result for n+ 1. Since (T + F )n(0) = Tn(0) ⊂ N(F ) then by Lemma 3.1, we have

(T + F )n+1 = (T + F )(T + F )n = T (T + F )n + F (T + F )n.

It follows that,
(T + F )n+1(0) = T (T + F )n(0) + F (T + F )n(0)

= TTn(0) + F (Tn(0))

= Tn+1(0).

Thus (T + F )n(0) = Tn(0) for all n ∈ N∗. 2

The next lemma is a generalization of observation 8 in [17].

Lemma 3.3 Let T ∈ BR(X) and F be a bounded operator such that R∞(T ) ⊂ N(F ). Then

(T + F )n = Tn +

n−1∑
i=0

T iF (T + F )n−i−1. (3.2)

Proof
We prove (3.2) by induction on n. For n = 1 the statement is trivial. Suppose that (3.2) is true for some integer n
and we prove for n+ 1. By Lemma 3.2 and Proposition 3.1, we have

(T + F )n+1 = (T + F )(T + F )n

= T (T + F )n + F (T + F )n

= T
(
Tn +

n−1∑
i=0

T iF (T + F )n−i−1
)

+ F (T + F )n

= Tn+1 +

n−1∑
i=0

T i+1F (T + F )n−i−1, (by Proposition I.4.2 in [9])

= Tn+1 +

n∑
i=0

T iF (T + F )n−i.

2

Definition 3.1 Let X be a Banach space. For two subspaces M and N of X, we write M ⊂e N if there exists a
finite-dimensional subspace F of X such that M ⊂ N + F . Obviously M ⊂e N if and only if dim[M/(M ∩N)] <∞.
Notice that we can assume that F is a subset of M . Similarly, we write M =e N if both M ⊂e N and N ⊂e M .

As a consequence of Lemma 3.3, we get the following corollary.

Corollary 3.1 Let T ∈ BR(X) and F be a finite rank operator such that R∞(T ) ⊂ N(F ). Then R(T+F )n =e R(Tn)

for all n ∈ N∗.

Proof
As dim(R(F )) < ∞, we can suppose without loss of generality that dim(R(F )) = 1. Hence there exists v ∈ X such
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that R(F ) =< v >. By Lemma 3.3, we have

(T + F )n = Tn +

n−1∑
i=0

T iF (T + F )n−i−1.

Hence

(T + F )n(X) ⊂ Tn(X) +

n−1∑
i=0

T iF (T + F )n−i−1(X)

⊂ Tn(X) + F (T + F )n−1(X) +

n−1∑
i=1

T iF (T + F )n−i−1(X)

⊂ Tn(X)+ < v > +

n−1∑
i=1

T i < v > .

Let yi ∈ T i(< v >) so T i(< v >) =< yi > +T i(0). It follows that,

(T + F )n(X) ⊂ Tn(X)+ < v > +

n−1∑
i=1

< yi > +T i(0)

⊂ Tn(X)+ < v > +
n−1∑
i=1

< yi > +Tn−1(0)

⊂ Tn(X)+ < v > +

n−1∑
i=1

< yi > .

It’s clear that, dim(< v > +

n−1∑
i=1

< yi >) < ∞. Hence R(T + F )n ⊂e R(Tn). Conversely by Lemma 3.2, we have

(T + F )n(0) = Tn(0) ⊂ N(F ) = N(−F ) so by substituting T by T + F and F by −F we get R(Tn) ⊂e R(T + F )n.
Thus R(Tn) =e R(T + F )n for all n ∈ N∗. 2

The next lemma provides the relationships between N(T ) and N(T + F ), where T ∈ LR(X) and F a finite rank
operator.

Lemma 3.4 Let T ∈ LR(X) and F be a finite rank operator. Then

N(T + F ) =e N(T ).

Proof
We can suppose that there exists v ∈ X such that R(F ) =< v >. Let x ∈ N(T +F ) then (T +F )(x) = (T +F )(0) =

T (0). Thus T (x) = T (0) − F (x) so x ∈ T−1(T (0) − F (x)) = N(T ) + T−1(−F (x)) ⊂ N(T ) + T−1(< v >). Let
z ∈ T−1(v) therefore

T−1(< v >) =< z > +T−1(0) =< z > +N(T ).

It follows that, x ∈< z > +N(T ). Hence N(T +F ) ⊂e N(T ). Now, by substituting T by T +F and F by −F we get,
N(T ) ⊂e N(T + F ).
Consequently

N(T + F ) =e N(T ).

2

The next lemma is elementary but essential to prove Corollary 3.2.
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Lemma 3.5 ([11], Lemma 2.4) Let M1, M2 and N be subspaces of a linear space X and assume that M1 ⊂ M2.
Then

dim(M1/M1 ∩N) ≤ dim(M2/M2 ∩N).

As a consequence of the technical lemmas 1.1 and 3.5, we have the following corollary.

Corollary 3.2 Let T ∈ BR(X), and F be a finite rank operator such that R∞(T ) ⊂ N(F ). Then R(Tn) ∩N(T ) =e

R(T + F )n ∩N(T + F ) for all n ∈ N∗.

Proof
By Corollary 3.1, and Lemma 3.4, we have R(Tn) =e R(T + F )n and N(T ) =e N(T + F ). It follows that, there
exist two subspaces G1 and G2 with dim(G1) < ∞ and dim(G2) < ∞, such that R(T + F )n ⊂ R(Tn) + G1 and
N(T + F ) ⊂ N(T ) +G2. Hence

R(T + F )n ∩N(T + F ) ⊂ N(T + F ) ⊂ N(T ) +G2,

R(T + F )n ∩N(T + F ) ⊂ R(T + F )n ⊂ R(Tn) +G1.

Thus, R(T + F )n ∩N(T + F ) ⊂e N(T ) and R(T + F )n ∩N(T + F ) ⊂e R(Tn). It follows that,

dim(R(T + F )n ∩N(T + F )/R(T + F )n ∩N(T + F ) ∩N(T )) <∞,
dim(R(T + F )n ∩N(T + F )/R(T + F )n ∩N(T + F ) ∩R(Tn)) <∞.

By Lemma 1.1, we have

dim(R(T + F )n ∩N(T + F )/R(T + F )n ∩N(T + F ) ∩N(T ) ∩R(Tn)) =

dim(R(T + F )n ∩N(T + F )/R(T + F )n ∩N(T + F ) ∩N(T ))+

dim(R(T + F )n ∩N(T + F ) ∩N(T )/R(T + F )n ∩N(T + F ) ∩N(T ) ∩R(Tn)).

Now, using Lemma 3.5, we get

dim(R(T + F )n ∩N(T + F ) ∩N(T )/R(T + F )n ∩N(T + F ) ∩N(T ) ∩R(Tn)) ≤
dim(R(T + F )n ∩N(T + F )/R(T + F )n ∩N(T + F ) ∩R(Tn)) <∞.

Hence,
dim(R(T + F )n ∩N(T + F )/R(T + F )n ∩N(T + F ) ∩N(T ) ∩R(Tn)) <∞.

It follows that R(T +F )n ∩N(T +F ) ⊂e N(T )∩R(Tn). As by Lemma 3.2, we have (T +F )n(0) = Tn(0) ⊂ N(F ) =

N(−F ). So by substituting T by T +F and F by −F we get, R(Tn)∩N(T ) ⊂e N(T +F )∩R(T +F )n. Consequently

R(Tn) ∩N(T ) =e N(T + F ) ∩R(T + F )n for all n ∈ N∗.

2

Lemma 3.6 Let T ∈ BCR(X) and let F ⊂ X be a finite dimensional subspace. Suppose that R(T ) + F is closed.
Then R(T ) is closed.

Proof
Since T is bounded so QTT is a bounded operator. Clearly
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R(QTT ) +QT (F ) = R(T )/T (0) + (F + T (0))/T (0)

= (R(T ) + F + T (0))/T (0)

= (R(T ) + F )/T (0).

Since by hypothesis R(T )+F and T (0) are closed, then (R(T )+F )/T (0) is closed. This implies that, R(QTT )+QT (F )

is closed. As dim(QT (F )) <∞, by applying Lemma 2 in [18], we have R(QTT ) is closed. Hence R(T )/T (0) is closed.
As T (0) is closed then by Proposition 1.7.5 in [10], it follows that R(T ) is closed. 2

Now, we are in the position to give the main theorem of this section.

Theorem 3.1 Let T ∈ BCR(X) be a strictly quasi-Fredholm of degree d with T d+1(0) closed and let F be a finite
rank operator such that R∞(T ) ⊂ N(F ) for all n ∈ N. Then T + F is also strictly quasi-Fredholm of degree d.

Proof
As dim(R(F )) < ∞, we can suppose without loss of generality that dimR(F ) = 1. Then there exist z ∈ X and
ϕ ∈ X∗ such that F (x) = ϕ(x)z for all x ∈ X. Since dimR(F ) <∞ so by Corollary 3.1, we have R(T +F )n =e R(Tn)

for all n ∈ N. As T is strictly quasi-Fredholm of degree d so kn(T ) = 0 for all n ≥ d and R(T d+1) is closed. Hence
dimR(Tn) ∩ N(T )/R(Tn+1) ∩ N(T ) = 0 for all n ≥ d. Let T1 = T/R(Td). Thus we have N(T1) = N(T ) ∩ R(T d) ⊂
N(T )∩R(Tn) for all n ≥ d. This implies that N(T1) ⊂ R∞(T1) and R(T1) = R(T d+1) is closed thus T1 is semi-regular.
First, we claim that N(T1) ⊂e R∞(T + F ). We distinguish two cases:
Case 1: N∞(T ) ⊂ ker(ϕ).
Let x0 ∈ N(T1). Since T1 is semi-regular then there exist x1, x2, ... ∈ R∞(T1) such that xi−1 ∈ Txi. By the assumption
we have ϕ(xi) = 0, so F (xi) = 0 for all i. For n ∈ N we have

(T + F )nxn = (T + F )n−1(T + F )xn = (T + F )n−1(Txn + Fxn)

= (T + F )n−1(xn−1 + T (0))

= (T + F )n−2(Txn−1 + T 2(0))

= (T + F )n−3(xn−3 + T 3(0))
...
= x0 + Tn(0).

= x0 + (T + F )n(0), ( since , (T + F )n(0) = Tn(0)).

It follows that, x0 ∈ (T + F )nxn ⊂ R(T + F )n. Hence, N(T1) ⊂ R(T + F )n for all n ∈ N which implies that
N(T1) ⊂ R∞(T + F ).
Case 2: N∞(T ) * ker(ϕ).
Let k ≥ 1 such that N(T k

1 ) * ker(ϕ). Choose the minimal k with this property so that N(T k−1) ⊂ ker(ϕ). Hence
there exists u ∈ N(T k

1 ) with ϕ(u) = 1. Set

Y = {x ∈ N(T1) : there is y ∈ R(T d) with x ∈ T k−1y and T i(y) ⊂ ker(ϕ) for all 0 ≤ i ≤ k − 1}.

We claim that
dimN(T1)/Y ≤ k.

Indeed, we have u ∈ N(T k
1 ) then there exists v ∈ N(T1) such that v ∈ T k−1

1 (u). Since, ϕ(u) = 1, then we can see
that v is not in Y. So, v 6= 0. Let x1, . . . , xk be k nonzero vectors in N(T1)/Y . Since T1 is semi-regular, there are
y1, . . . , yk ∈ R∞(T1) ⊂ R(T d) such that xj ∈ T k−1yj for all 1 ≤ j ≤ k. We shall verify now that

T i
1(yj) ⊂ ker(ϕ) for all 1 ≤ j ≤ k and 1 ≤ i ≤ k − 1.
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As xj ∈ T k−1yj so yj ∈ T−k+1xj ⊂ T−k(0) = N(T k). Thus, T iyj ∩ N(T k−i) 6= ∅ and hence T iyj ∩ ker(ϕ) 6= ∅. Let
z ∈ T iyj and z0 ∈ T iyj ∩ ker(ϕ). Then z − z0 ∈ T i(0) ⊂ ker(ϕ). Hence z ∈ ker(ϕ) and therefore T i

1(yj) ⊂ ker(ϕ). By
the same way we can prove that

T iu ⊂ ker(ϕ) for all 1 ≤ i ≤ k − 1.

Furthermore, for all 1 ≤ j ≤ k, we have ϕ(yj) 6= 0. In fact, if ϕ(yj) = 0, then by the definition of Y we get xj = 0

which is absurd.

Hence there exist α1, . . . , αk scalars such that ϕ(

j=k∑
j=1

αjyj) = 1. So ϕ(

j=k∑
j=1

αjyj − u) = 0. Then,
j=k∑
j=1

αjxj − v = 0 and

so, by the incomplete basis theorem we deduce that dimN(T1)/Y ≤ k. Observe that Y ⊂ N(T1) then N(T1) =e Y.

As a consequence it is sufficient to verify that Y ⊂ R∞(T + F ). Let x ∈ Y . We prove the following statement :

∀n ∈ N, ∃xn ∈ R(T d) such that x ∈ Tnxn and T ixn ⊂ ker(ϕ) for all 0 ≤ i ≤ n. (3.3)

Since x ∈ Y then there exists y ∈ R(T d) with x ∈ T k−1y and T i(y) ⊂ ker(ϕ) for all 0 ≤ i ≤ k − 1. First consider
the case 0 ≤ n ≤ k − 1. For the case n = 0 there is nothing to prove. Now let 1 ≤ n ≤ k − 1. We have x ∈
T k−1y = TnT k−1−ny. Then there exists xn ∈ T k−1−ny such that x ∈ Tnxn. It remains to prove that T ixn ⊂ ker(ϕ)

for all 0 ≤ i ≤ n. For 0 ≤ i ≤ n, taking zk−n+i−1 ∈ T k−n+i−1y ⊂ ker(ϕ) and let αi ∈ T ixn ⊂ T k+i−1−ny. We have
zk−n+i−1 ∈ ker(ϕ) and zk−n+i−1 − αi ∈ T k−n+i−1(0) ⊂ ker(ϕ). So, αi ∈ ker(ϕ) and therefore T i(xn) ⊂ ker(ϕ). For
the case n ≥ k − 1, suppose that Eq. (3.3) is true for some n ≥ k − 1. Then, there exists xn ∈ R(T d) such that x ∈
Tnxn and T ixn ⊂ ker(ϕ) for all 0 ≤ i ≤ n. Since T1 is semi-regular, we can find x′n+1 ∈ R(T d) such that xn ∈ Tx′n+1.
Set xn+1 = x′n+1 − ϕ(x′n+1)u. Then

Tn+1xn+1 = Tn+1x′n+1 − ϕ(x′n+1)Tn+1u

= Tn(Tx′n+1)− ϕ(x′n+1)Tn+1u

= Tn(xn + T (0))− ϕ(x′n+1)Tn+1u

= Tn(xn) + Tn+1(0), ( since u ∈ N(T k) ⊂ N(Tn+1))

= x+ Tn(0) + Tn+1(0) = x+ Tn+1(0).

So x ∈ Tn+1xn+1. It’s clear that ϕ(xn+1) = 0. Now, we prove that T ixn+1 ⊂ ker(ϕ) for all 1 ≤ i ≤ n. For
1 ≤ i ≤ k − 1.

T ixn+1 = T ix′n+1 − ϕ(x′n+1)T iu

= T i−1(Tx′n+1)− ϕ(x′n+1)T iu

= T i−1(xn + T (0))− ϕ(x′n+1)T iu

= T i−1(xn) + T i(0)− ϕ(x′n+1)T iu

= T i−1(xn)− ϕ(x′n+1)T iu.

Let z ∈ T ixn+1 so there exist α ∈ T i−1xn and β ∈ T iu, such that z = α− ϕ(x′n+1)β. Since T iu ⊂ N(T k−1) ⊂ ker(ϕ)

also T i−1(xn) ⊂ ker(ϕ). It follows that,

ϕ(z) = ϕ(α− ϕ(x′n+1)β)

= ϕ(α)− ϕ(x′n+1)ϕ(β)

= 0.

Therefore for all z ∈ T ixn+1 we have ϕ(z) = 0. Hence T ixn+1 ⊂ ker(ϕ), for all 1 ≤ i ≤ k − 1.
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Now, for k ≤ i ≤ n we have u ∈ N(T k) so T iu = T i(0).

T ixn+1 = T ix′n+1 − ϕ(x′n+1)T iu

= T i−1(Tx′n+1)− T i(0)

= T i−1(xn + T (0))− T i(0)

= T i−1xn + T i(0).

Let z ∈ T ixn+1 so there exist α ∈ T i−1xn and β ∈ T i(0) such that, z = α + β. As T i−1xn ⊂ ker(ϕ) for all j ∈ N we
have T j(0) ⊂ N(F ) then T j(0) ⊂ ker(ϕ) for all j ∈ N hence we have ϕ(z) = ϕ(α) + ϕ(β) = 0. It follows that, for all
z ∈ T ixn+1 we have ϕ(z) = 0. Consequently, T ixn+1 ⊂ ker(ϕ). Thus (3.3) is true for all n ∈ N.
Thus,

(T + F )nxn = (T + F )n−1(T + F )xn = (T + F )n−1(Txn + F (xn))

= (T + F )n−1(Txn)

= (T + F )n−2(T + F )(Txn) = (T + F )n−2(T 2xn + F (T (xn)))

= (T + F )n−3(T + F )(T 2xn) = (T + F )n−3(T 3xn + F (T 2(xn))

= (T + F )n−4(T 4xn) + F (T 3(xn))
...
= Tnxn

= x+ Tn(0), ( since , x ∈ Tnxn)

= x+ (T + F )n(0), ( since , (T + F )n(0) = Tn(0)).

Thus x ∈ R(T + F )n for all n ∈ N. It follows that, Y ⊂ R∞(T + F ). Thus N(T1) ⊂e R∞(T + F ). Since by Corollary
3.2, we have N(T + F ) ∩R(T + F )d =e N(T ) ∩R(T d) = N(T1), then,

N(T + F ) ∩R(T + F )d ⊂e R∞(T + F ).

It follows that,
dimN(T + F ) ∩R(T + F )d/N(T + F ) ∩R(T + F )d ∩R∞(T + F ) <∞.

Therefore,
dimN(T + F ) ∩R(T + F )d/N(T + F ) ∩R∞(T + F ) <∞.

So N(T + F ) ∩R(T + F )d ⊂e R∞(T + F ) ∩N(T + F ). On the other hand, we have

N(T + F ) ∩R∞(T + F ) ⊂e N(T + F ) ∩R(T + F )d.

Consequently
R∞(T + F ) ∩N(T + F ) =e N(T + F ) ∩R(T + F )d.

This implies that
N(T + F ) ∩R(T + F )n =e N(T + F ) ∩R(T + F )d, for all n ≥ d.

Thus, kn(T + F ) = 0, for all n ≥ d. Now, it remains to show that R(T + F )d+1 is closed. As

R(T d+1) =e R(T + F )d+1.

So there exist two finite rank subspaces G1 ⊂ X and G2 ⊂ X such that

R(T d+1) +G1 = R(T + F )d+1 +G2.
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As R(T d+1) is closed and dim(G1) < ∞ so R(T d+1) + G1 is closed. This implies that R(T + F )d+1 + G2 is closed.
Since (T + F )d+1 is continuous and D(T + F )d+1 = X and in the other hand (T + F )d+1(0) is closed, it follows that
(T + F )d+1 is closed. As dim(G2) < ∞, then by applying Lemma 3.6, to (T + F )d+1 we get R(T + F )d+1 is closed.
Consequently T + F is strictly quasi-Fredholm of degree d. 2

4 Conclusions

We investigate some properties of the class of strictly quasi-Fredholm linear relations previously defined in [6]. By
using some notions and results from algebra and functional analysis, we prove in particular that :
� The adjoint of a strictly quasi-Fredholm linear relation is a quasi-Fredholm linear operator.
� The power of a strictly quasi-Fredholm linear relation is also a strictly quasi-Fredholm linear relation.
� The product of two linear relations is strictly quasi-Fredholm if and only if each of them is a strictly quasi-Fredholm
linear relation.
� The class of strictly quasi-Fredholm linear relations is stable under perturbation by finite rank operators.
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