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Abstract 

In this paper we study some curvature properties of Kenmotsu manifolds with respect to the Schouten-van 
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1. Introduction  

The study of Schouten-van Kampen connection has been initiated for the study of non-holomorphic 

manifolds. It preserves by parallelism, the Schouten-van Kampen connection is one of the most natural 

connections adapted to a pair of complementary distributions on a differentiable manifold endowed with 

an affine connection ([2], [11], [19]). Olszak [15] studied and proved some interesting results on the 

Schouten-van Kampen connection to adapt to an almost(para) contact metric structure. Later on some 

interesting properties of Schouten-van Kampen connection with different manifolds studied by many 

authors like ([7], [13], [14], [23]). 

Kenmotsu [12] introduced and studied the fundamental properties on local structure of a new class of 

almost contact Riemann manifold which is known as Kenmotsu Manifold. Several properties of Kenmotsu 

Manifold have been studied by many authors like ([1], [3], [4], [6], [9], [10], [16], [17], [20]). Motivated by all 

these work in this paper we study Kenmotsu manifolds admitting Schouten-Van Kampen connection with 

Pseudo-Projective and 𝑊8-curvature tensor. 

The present paper is organized as follows: After a brief review of Kenmotsu manifold and some curvature 

properties of Kenmotsu manifolds with respect to the Schouten-van Kampen connection we study Pseudo-

Projectively flat,  𝜉- Pseudo-Projectively flat,  𝜙-Pseudo-Projectively Semi-symmetric, Pseudo-Pseudo-

Projectively flat,  𝑊8
∗-flat,   𝜉-𝑊8

∗-flat,  𝜙-𝑊8
∗- semisymmetric, Pseudo-𝑊8

∗-flat conditions. 

2. Preliminaries 

In this section, we briefly recall some general definitions of Kenmotsu manifolds: 

An 𝑛-dimensional differential manifold 𝑀 is said to be an almost contact metric manifold [3] if it admits an 

almost contact metric structure (𝜙, 𝜉, 𝜂, 𝑔) consisting of a tensor field 𝜙 of type (1, 1), a vector field 𝜉 and 

1-form 𝜂  and a Riemannian metric 𝑔 compatible with (𝜙, 𝜉, 𝜂)  satisfying 

(2.1)               𝜙2 = −𝐼 + 𝜂⨂𝜉,   𝜂(𝜉) = 1,   𝜂 ∘ 𝜙 = 0, 𝜙𝜉 = 0. 

(2.2)               𝑔(𝜙𝑋, 𝜙𝑌) = 𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌),   𝑔(𝑋, 𝜉) = 𝜂(𝑋). 

An almost contact metric manifold is said to be a Kenmotsu manifold [12]  if it satisfies 

(2.3)                (∇X 𝜙)𝑌 = −𝜂(𝑌)𝜙𝑋 − 𝑔(𝑋, 𝜙𝑌)𝜉, 

(2.4)              ∇X 𝜉 = 𝑋 − 𝜂(𝑋)𝜉, 

(2.5)             (∇X 𝜂)𝑌 = 𝑔(∇X𝜉, 𝑌), 
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where ∇ denotes the Riemannian connection of 𝑔. 

In a Kenmotsu manifold [12] the following relations hold: 

(2.6)            𝜂(𝑅(𝑋, 𝑌)𝑍) = 𝑔(𝑋, 𝑍)𝜂(𝑌) − 𝑔(𝑌, 𝑍)𝜂(𝑋), 

(2.7)                  𝑅(𝑋, 𝑌)𝜉 = 𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋, 

(2.8)                  𝑅(𝜉, 𝑋)𝑌 = 𝜂(𝑌)𝑋 − 𝑔(𝑋, 𝑌)𝜉, 

(2.9)                     𝑆(𝑋, 𝜉) = −(𝑛 − 1)𝜂(𝑋), 

(2.10)                   𝑄 𝜉 = −(𝑛 − 1)𝜉, 

for any vector fields 𝑋, 𝑌, 𝑍 on 𝑀,  where 𝑅, 𝑆 and 𝑄 denotes the curvature tensor, Ricci tensor and Ricci 

operator 

𝑔(𝑄𝑋, 𝑌 )  =  𝑆(𝑋, 𝑌) on 𝑀. 

3. Some curvature properties of Kenmotsu manifolds with respect to Schouten-van Kampen 

Connection 

In this section, we study some basic properties of Kenmotsu manifolds with respect to Schouten-van 

Kampen Connection. The Schouten-van Kampen Connection ∇∗  associated to the Levi-Civita connection ∇ 

is given by [15] 

(3.1)          ∇X
∗Y = ∇XY − 𝜂(𝑌)∇X𝜉 + (∇X𝜂)(𝑌)𝜉, 

for any vector fields  𝑋, 𝑌 on  𝑀. 

By using (2.4) and (2.5) in (3.1), we get 

(3.2)          ∇X
∗Y = ∇XY + g(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋.  

Putting 𝑌 = 𝜉  in (3.2) and by virtue of (2.4), we obtain 

(3.3)          ∇X
∗  𝜉 = 0. 

A relation between the Riemannian curvature tensor  𝑅∗ of a Kenmotsu manifolds with respect to the 

Schouten-van Kampen connection ∇∗ and the Levi-Civita connection ∇ is given by 

(3.4)       𝑅∗(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 + 𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌. 

Putting  𝑍 = 𝜉  in  (3.4) and by using  (2.7), we have 

(3.5)      𝑅∗(𝑋, 𝑌)𝜉 = 0. 

On contracting (3.4), we get the Ricci tensor  𝑆∗ of a Kenmotsu manifolds with respect to the Schouten-van 

Kampen connection ∇∗ 

(3.6)         𝑆∗(𝑌, 𝑍) = 𝑆(𝑌, 𝑍) + (𝑛 − 1)𝑔(𝑌, 𝑍). 

From (3.6), we obtain 

(3.7)         𝑄∗𝑌 = 𝑄𝑌 + (𝑛 − 1)𝑌. 

On contracting (3.6), we get 

(3.8)         𝑟∗ = 𝑟 + 𝑛 (𝑛 − 1), 

where 𝑟∗ and 𝑟 are the scalar curvature with respect to the Schouten-van Kampen connection ∇∗  and the 

Levi-Civita 

connection ∇ respectively. 

4. Pseudo-Projectively flat Kenmotsu manifold with respect to Schouten-van Kampen connection 
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In this section, we study Pseudo-Projectively flat Kenmotsu manifold with respect to the Schouten-van 

Kampen connection: 

Definition 4.1. A Kenmotsu manifold is said to be Pseudo-Projectively flat with respect to the Schouten-

van Kampen connection if 

(4.1)            𝑃∗(𝑋, 𝑌)𝑍 = 0 

for any vector fields 𝑋, 𝑌, 𝑍 on 𝑀.  Pseudo-Projective curvature tensor [22]  is defined as 

(4.2)          𝑃∗(𝑋, 𝑌)𝑍 = 𝑎 𝑅∗(𝑋, 𝑌)𝑍 + 𝑏[𝑆∗(𝑌, 𝑍)𝑋 − 𝑆∗(𝑋, 𝑍)𝑌] −
𝑟∗

𝑛
[

𝑎

𝑛−1
+ 𝑏] [𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌], 

where 𝑅∗  and  𝑆∗ are the curvature tensor and Ricci tensor of the manifold with respect to the Schouten-

van Kampen connection respectively. 

From (4.1) and (4.2), we get 

(4.3)          𝑎 𝑅∗(𝑋, 𝑌)𝑍 + 𝑏[𝑆∗(𝑌, 𝑍)𝑋 − 𝑆∗(𝑋, 𝑍)𝑌] −
𝑟∗

𝑛
[

𝑎

𝑛−1
+ 𝑏] [𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌] = 0. 

By taking an innerproduct with 𝜉   in (4.3), we obtain 

(4.4)                                 𝑎 𝑔(𝑅∗(𝑋, 𝑌)𝑍, 𝜉) + 𝑏[𝑆∗(𝑌, 𝑍)𝑔(𝑋, 𝜉) − 𝑆∗(𝑋, 𝑍)𝑔(𝑌, 𝜉)]       

−
𝑟∗

𝑛
[

𝑎

𝑛 − 1
+ 𝑏] [𝑔(𝑌, 𝑍)𝑔(𝑋, 𝜉) − 𝑔(𝑋, 𝑍)𝑔(𝑌, 𝜉)] = 0. 

By using (3.4), (3.6) in (4.4) and on simplification, we have 

(4.5)          𝑏[𝑆(𝑌, 𝑍)𝜂(𝑋) − 𝑆(𝑋, 𝑍)𝜂(𝑌)] + [
−𝑎𝑟−𝑎𝑛(𝑛−1)−𝑏𝑟(𝑛−1)

𝑛(𝑛−1)
] [𝑔(𝑌, 𝑍)𝜂(𝑋) − 𝑔(𝑋, 𝑍)𝜂(𝑌)] = 0.  

Putting 𝑋 = 𝜉  in (4.5) and by virtue of (2.9), we get 

(4.6)    𝑆(𝑌, 𝑍) = [
𝑎𝑟+𝑎𝑛(𝑛−1)+𝑏𝑟(𝑛−1)

𝑏 𝑛(𝑛−1)
] 𝑔(𝑌, 𝑍) − [(𝑛 − 1) +

𝑎𝑟+𝑎𝑛(𝑛−1)+𝑏𝑟(𝑛−1)

𝑏 𝑛(𝑛−1)
] 𝜂(𝑌)𝜂(𝑍).   

Hence, we state the following theorem: 

Theorem 4.1. For a Pseudo-Projectively flat Kenmotsu manifold with respect to the Schouten-van Kampen 

connection the manifold is an 𝜂-Einstein manifolds with  𝑏 ≠  0. 

5. 𝝃-Pseudo-Projectively flat Kenmotsu manifold with respect to Schouten-van Kampen connection 

In this section, we study 𝜉-Pseudo-Projectively flat Kenmotsu manifold with respect to the Schouten-van 

Kampen connection  ∇∗: 

Definition 5.2. A Kenmotsu manifold is said to be  𝜉-Pseudo-Projectively flat with respect to the Schouten-

van Kampen connection if 

(5.1)                𝑃∗(𝑋, 𝑌)𝜉 = 0 

for any vector fields  𝑋, 𝑌  on 𝑀.  

From (4.2), we get 

(5.2)          𝑃∗(𝑋, 𝑌)𝜉 = 𝑎 𝑅∗(𝑋, 𝑌)𝜉 + 𝑏[𝑆∗(𝑌, 𝜉)𝑋 − 𝑆∗(𝑋, 𝜉)𝑌] −
𝑟∗

𝑛
[

𝑎

𝑛−1
+ 𝑏] [𝑔(𝑌, 𝜉)𝑋 − 𝑔(𝑋, 𝜉)𝑌]. 

From (5.1)  and  (5.2), we obtain 

(5.3)          𝑎 𝑅∗(𝑋, 𝑌)𝜉 + 𝑏[𝑆∗(𝑌, 𝜉)𝑋 − 𝑆∗(𝑋, 𝜉)𝑌] −
𝑟∗

𝑛
[

𝑎

𝑛−1
+ 𝑏] [𝑔(𝑌, 𝜉)𝑋 − 𝑔(𝑋, 𝜉)𝑌] = 0. 

By using  (3.5), (3.6)  in (5.3), we get 

(5.4)                 −
𝑟∗

𝑛
[

𝑎

𝑛−1
+ 𝑏] [𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌] = 0. 

Putting  𝑌 = 𝜉  in (5.4) and on simplification, we have 
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(5.5)                 
𝑟+𝑛(𝑛−1)

𝑛
[

𝑎

𝑛−1
+ 𝑏] [𝑋 − 𝜂(𝑋)𝜉] = 0. 

By taking an innerproduct with 𝑈 in (5.5), we get 

(5.6)                 
𝑟+𝑛(𝑛−1)

𝑛
[

𝑎

𝑛−1
+ 𝑏] [𝑔(𝑋, 𝑈) − 𝜂(𝑋)𝜂(𝑈)] = 0. 

The above equation implies that either  𝑟 =  −𝑛(𝑛 −  1) or 

(5.7)                              𝑔(𝑋, 𝑈) − 𝜂(𝑋)𝜂(𝑈) = 0 

with  𝑎 ≠ − 𝑏(𝑛 − 1).   Now, replacing 𝑋 =  𝑄𝑋 in (5.7) and on simplification, we obtain 

(5.8)                              𝑆(𝑋, 𝑈) = −(𝑛 −  1)𝜂(𝑋)𝜂(𝑈). 

Hence, we state the following theorem: 

Theorem 5.2. For a 𝜉-Pseudo-Projectively flat Kenmotsu manifold with respect to the Schouten-van 

Kampen connection, either the scalar curvature  𝑟 =  −𝑛(𝑛 −  1) or the manifold is a special type of  𝜂-

Einstein manifolds with 𝑎 ≠ − 𝑏(𝑛 − 1).  

6. 𝝓-Pseudo-Projectively Semi-symmetric Kenmotsu manifold with respect to Schouten-van Kampen 

connection 

In this section, we study 𝜙-Pseudo-Projectively Semi-symmetric  Kenmotsu manifold with respect to the  

Schouten-van Kampen connection  ∇∗: 

Definition 6.3. A Kenmotsu manifold is said to be 𝜙-Pseudo-Projectively Semi-symmetric with respect to 

the Schouten-van Kampen connection if 

(6.1)                𝑃∗(𝑋, 𝑌) ∙ 𝜙 = 0, 

for any vector fields 𝑋, 𝑌 on 𝑀.  

Now, (6.1) turns into 

(6.2)                (𝑃∗(𝑋, 𝑌) ∙ 𝜙)𝑍 = 𝑃∗(𝑋, 𝑌)𝜙𝑍 − 𝜙𝑃∗(𝑋, 𝑌)𝑍 = 0. 

Putting 𝑍 = 𝜉   in (6.2) and by virtue of (4.2) and on simplification, we obtain 

(6.3)                 −
𝑟∗

𝑛
[

𝑎

𝑛−1
+ 𝑏] [𝜂(𝑌)𝜙𝑋 − 𝜂(𝑋)𝜙𝑌] = 0. 

Putting  𝑌 = 𝜉  and  𝑋 = 𝜙𝑋  in (6.3), we get 

(6.4)                 
𝑟+𝑛(𝑛−1)

𝑛
[

𝑎

𝑛−1
+ 𝑏] [−𝑋 + 𝜂(𝑋)𝜉] = 0. 

Taking innerproduct with 𝑉 in (6.4), we get 

(6.5)                 
𝑟+𝑛(𝑛−1)

𝑛
[

𝑎

𝑛−1
+ 𝑏] [−𝑔(𝑋, 𝑉) + 𝜂(𝑋)𝜂(𝑉)] = 0. 

The above equation implies that either  𝑟 =  −𝑛(𝑛 −  1) or 

(6.6)                              −𝑔(𝑋, 𝑉) + 𝜂(𝑋)𝜂(𝑉) = 0 

with  𝑎 ≠ − 𝑏(𝑛 − 1).   Now, replacing 𝑋 =  𝑄𝑋 in (6.6) and on simplification, we obtain 

(6.7)                              𝑆(𝑋, 𝑉) = −(𝑛 −  1)𝜂(𝑋)𝜂(𝑉). 

Hence, we state the following theorem: 

Theorem 6.3. For a 𝜙-Pseudo projectively Semi-symmetric Kenmotsu manifold with respect to the 

Schouten-van Kampen connection either the scalar curvature 𝑟 =  −𝑛(𝑛 −  1) or the manifold is a special 

type of 𝜂-Einstein manifolds with 𝑎 ≠ − 𝑏(𝑛 − 1). 

7. Pseudo-Pseudo-Projectively flat Kenmotsu manifold with respect to Schouten-van Kampen 

connection 
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In this section, we study Pseudo-Pseudo-Projectively flat  Kenmotsu manifold with respect to the Schouten-

van Kampen connection  ∇∗: 

Definition 7.4. A Kenmotsu manifold is said to be Pseudo-Pseudo-Projectively flat with respect to the 

Schouten-van Kampen connection if 

(7.1)                𝑔(𝑃∗(𝜙𝑋, 𝑌)𝑍, 𝜙𝑊) = 0, 

for any vector fields 𝑋, 𝑌, 𝑍, 𝑊 on 𝑀.  

By using  (4.2) in (7.1), we get  

(7.2)                        𝑎 𝑔(𝑅∗(𝜙𝑋, 𝑌)𝑍, 𝜙𝑊) + 𝑏[𝑆∗(𝑌, 𝑍)𝑔(𝜙𝑋, 𝜙𝑊) − 𝑆∗(𝜙𝑋, 𝑍)𝑔(𝑌, 𝜙𝑊)] 

−
𝑟∗

𝑛
[

𝑎

𝑛 − 1
+ 𝑏] [𝑔(𝑌, 𝑍) 𝑔(𝜙𝑋, 𝜙𝑊) − 𝑔(𝜙𝑋, 𝑍)𝑔(𝑌, 𝜙𝑊)] = 0. 

Let {𝑒1, 𝑒2, … 𝑒𝑛} be a local orthonormal basis of vector fields in M. Then by putting 𝑌 =  𝑍 =  𝑒𝑖 in (7.2) and 

by virtue of (3.4), (3.6), (3.8) and on simplification, we obtain 

(7.3)                              𝑆(𝜙𝑋, 𝜙𝑊)  =
𝑟

𝑛
  𝑔(𝜙𝑋, 𝜙𝑊) . 

Putting  𝑊 = 𝜙 𝑊 and  𝑋 = 𝜙𝑋 in (7.3) and on simplification, we get 

(7.4)                              𝑆(𝑋, 𝑊)  =
𝑟

𝑛
  𝑔(𝑋, 𝑊) − [

𝑟

𝑛
+ (𝑛 − 1)]  𝜂(𝑋)𝜂(𝑉). 

Hence, we state the following theorem: 

Theorem 7.4. For a Pseudo-Pseudo projectively flat Kenmotsu manifold with respect to the Schouten-van 

Kampen 

connection then the  manifold is an 𝜂-Einstein manifold. 

8. 𝑾𝟖
∗

 
-flat Kenmotsu manifold with respect to Schouten-van Kampen connection 

In this section, we study 𝑊8
∗

 
-flat  in Kenmotsu manifold with respect to the Schouten-van Kampen 

connection: 

Definition 8.5. A Kenmotsu manifold is said to be 𝑊8
∗

 
-flat with respect to the Schouten-van Kampen 

connection if 

(8.1)                  𝑊8
∗

 
(𝑋, 𝑌)𝑍 = 0 

for any vector fields 𝑋, 𝑌, 𝑍 on 𝑀.   𝑊8
∗

 
-curvature tensor [22] is defined as 

(8.2)                  𝑊8
∗

 
(𝑋, 𝑌)𝑍 =  𝑅∗(𝑋, 𝑌)𝑍 +

1

𝑛−1
[𝑆∗(𝑋, 𝑌)𝑍 − 𝑆∗(𝑌, 𝑍)𝑋],  

where 𝑅∗ and 𝑆∗ are the curvature tensor and Ricci tensor of the manifold with respect to the Schouten-van 

Kampen connection respectively. 

From (8.1) and (8.2), we get 

(8.3)                   𝑅∗(𝑋, 𝑌)𝑍 = −
1

𝑛−1
[𝑆∗(𝑋, 𝑌)𝑍 − 𝑆∗(𝑌, 𝑍)𝑋],  

By taking an innerproduct with 𝜉  in (8.3), we obtain 

(8.4)                  𝑔(𝑅∗(𝑋, 𝑌)𝑍, 𝜉) = −
1

𝑛−1
[𝑆∗(𝑋, 𝑌)𝑔(𝑍, 𝜉) − 𝑆∗(𝑌, 𝑍)𝑔(𝑋, 𝜉)].   

By using (3.4), (3.6) in (8.4) and on simplification, we have 

(8.5)      𝑆(𝑋, 𝑌)𝜂(𝑍)  + (𝑛 −  1)𝑔(𝑋, 𝑌)𝜂(𝑍) −  𝑆(𝑌, 𝑍)𝜂(𝑋) −  (𝑛 −  1)𝑔(𝑌, 𝑍)𝜂(𝑋)  =  0. 

Putting  𝑍 = 𝜉  in (8.5) and by virtue of (2.9), we get 

(8.6)       𝑆(𝑋, 𝑌) =  − (𝑛 −  1)𝑔(𝑋, 𝑌). 
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Hence, we state the following theorem: 

Theorem 8.5. If a Kenmotsu manifold satisfying 𝑊8
∗

 
-flat condition with respect to the Schouten-van 

Kampen connection then the manifold is an Einstein manifolds. 

9. 𝝃 − 𝑾𝟖
∗

 
-flat Kenmotsu manifold with respect to Schouten-van Kampen connection 

In this section, we study  𝜉 − 𝑊8
∗

 
-flat  Kenmotsu manifold with respect to the  Schouten-van Kampen 

connection: 

Definition 9.6.  A Kenmotsu manifold is said to be 𝜉 − 𝑊8
∗

 
-flat with respect to the  Schouten-van Kampen 

connection if 

(9.1)                  𝑊8
∗

 
(𝑋, 𝑌)𝜉 = 0 

for any vector fields 𝑋, 𝑌 on 𝑀. 

From (9.1) and (8.2), we get 

(9.2)                   𝑅∗(𝑋, 𝑌)𝜉 = −
1

𝑛−1
[𝑆∗(𝑋, 𝑌)𝜉 − 𝑆∗(𝑌, 𝜉)𝑋].  

By using (3.5), (3.6) in (9.2), we obtain 

(9.3)                   𝑆∗(𝑋, 𝑌)𝜉 = −(𝑛 − 1)𝑔(𝑋, 𝑌)𝜉. 

By taking an innerproduct with 𝜉  in (9.3), we have 

(9.4)                   𝑆∗(𝑋, 𝑌) = −(𝑛 − 1)𝑔(𝑋, 𝑌). 

Hence, we state the following theorem: 

Theorem 9.6. If a Kenmotsu manifold satisfying   𝜉 − 𝑊8
∗

 
-flat condition with respect to the Schouten-van 

Kampen connection then the manifold is an Einstein manifolds. 

10. 𝝓 − 𝑾𝟖
∗

 
-semisymmetric condition in Kenmotsu manifold with respect to Schouten-van Kampen 

connection 

In this section, we study 𝜙 − 𝑊8
∗

 
-Semi-symmetric condition in Kenmotsu manifold with respect to the 

Schouten-van Kampen connection: 

Definition 10.7. A Kenmotsu manifold is said to be 𝜙 − 𝑊8
∗

 
-Semi-symmetric  with respect to the Schouten-

van Kampen connection if 

(10.1)                  𝑊8
∗

 
(𝑋, 𝑌) ∙ 𝜙 = 0, 

for any vector fields 𝑋, 𝑌 on 𝑀. 

Now, (10.1)  turns into 

(10.2)                  (𝑊8
∗

 
(𝑋, 𝑌) ∙ 𝜙)𝑍 = 𝑊8

∗
 
(𝑋, 𝑌)𝜙𝑍 − 𝜙𝑊8

∗
 
(𝑋, 𝑌)𝑍 = 0. 

Making use of (8.2) in (10.2), we get 

(10.3)                                         𝑅∗(𝑋, 𝑌)𝜙𝑍 +
1

𝑛−1
[𝑆∗(𝑋, 𝑌)𝜙𝑍 − 𝑆∗(𝑌, 𝜙𝑍)𝑋] 

−𝜙 (𝑅∗(𝑋, 𝑌)𝑍 +
1

𝑛 − 1
[𝑆∗(𝑋, 𝑌)𝑍 − 𝑆∗(𝑌, 𝑍)𝑋]) = 0. 

Putting  𝑋 = 𝜉  in (10.3) and by virtue of (3.4), (3.6) and on simplification, we obtain 

(10.4)      𝑅(𝜉, 𝑌)𝜙𝑍 −
1

𝑛−1
[𝑆(𝑌, 𝜙𝑍)𝜉 + (𝑛 − 1)𝑔(𝑌, 𝜙𝑍)𝜉] − 𝜙(𝑅(𝜉, 𝑌)𝑍 − 𝜂(𝑍)𝑌 + 𝑔(𝑌, 𝑍)𝜉) = 0. 

By using (2.8) in (10.4) and on simplification, we get 

(10.5)               −
1

𝑛−1
[𝑆(𝑌, 𝜙𝑍)𝜉 + (𝑛 − 1)𝑔(𝑌, 𝜙𝑍)𝜉] = 0. 
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By taking an innerproduct with 𝜉  in (10.5), we have 

(10.6)               𝑆(𝑌, 𝜙𝑍) = −(𝑛 − 1)𝑔(𝑌, 𝜙𝑍). 

Replace  𝑍 = 𝜙𝑍  in (10.6) and on simplification, we get 

(10.7)               𝑆(𝑌, 𝑍) = −(𝑛 − 1)𝑔(𝑌, 𝑍).  

On contracting (10.7), we obtain 

(10.8)                  𝑟 = −𝑛(𝑛 − 1).  

Hence, we state the following theorem: 

Theorem 10.7. If a Kenmotsu manifold satisfying  𝜙 − 𝑊8
∗

 
-Semi-symmetric condition with respect to the 

Schouten-van Kampen connection then the manifold is an Einstein manifold and the scalar curvature                     

𝑟 =  −𝑛(𝑛 − 1). 

11. Pseudo-𝑾𝟖
∗ -flat Kenmotsu manifold with respect to Schouten-van Kampen connection 

In this section, we study Pseudo-𝑊8
∗

 
-flat Kenmotsu manifold with respect to the Schouten-van Kampen 

connection  ∇∗: 

Definition 11.8. A Kenmotsu manifold is said to be Pseudo-𝑊8
∗

 
-flat with respect to the Schouten-van 

Kampen connection if 

(11.1)                          𝑔(𝑊8
∗(𝜙𝑋, 𝑌)𝑍, 𝜙𝑊) = 0, 

for all vector fields 𝑋, 𝑌, 𝑍, 𝑊 on  𝑀. 

By using (8.2) in (11.1), we get 

(11.2)                            𝑔(𝑅∗(𝜙𝑋, 𝑌)𝑍, 𝜙𝑊) +
1

𝑛−1
[𝑆∗(𝜙𝑋, 𝑌)𝑔(𝑍, 𝜙𝑊) − 𝑆∗(𝑌, 𝑍)𝑔(𝜙𝑋, 𝜙𝑊)] = 0. 

Let {𝑒1, 𝑒2, … 𝑒𝑛}  be a local orthonormal basis of vector fields in 𝑀. Then by putting 𝑌 =  𝑍 =  𝑒𝑖 in (11.2) 

and by 

virtue of (3.4), (3.6) and on simplification, we obtain 

(11.3)                            𝑆(𝜙𝑋, 𝜙𝑊)  =
𝑟

𝑛
 𝑔(𝜙𝑋, 𝜙𝑊). 

Putting 𝑊 = 𝜙𝑊 and 𝑋 = 𝜙𝑋 in (11.3) and on simplification, we have 

(11.4)           𝑆(𝑋, 𝑊) =
𝑟

𝑛
 𝑔(𝑋, 𝑊) − [

𝑟

𝑛
+ (𝑛 − 1)] 𝜂(𝑋)𝜂(𝑊). 

On contracting (11.4), we obtain 

(11.5)                         𝑟 =  −𝑛(𝑛 −  1). 

Hence, we state the following theorem: 

Theorem 11.8. In a Pseudo-𝑊8
∗

 
-flat  Kenmotsu manifold with respect to the Schouten-van Kampen 

connection the manifold is an 𝜂-Einstein manifolds and scalar curvature  𝑟 =  −𝑛(𝑛 −  1). 

Conclusions 

The Schouten-Van Kampen connection introduced for the study of non-holomorphic manifolds.  It 

preserves by  parallelism - Schouten-Van Kampen is one of the most natural connections adapted to a pair 

of complementary distributions on a differentiable manifold endowed with an affine connection. In this 

paper,  we found some curvature properties of Kenmotsu manifold with respect to the Schouten-van 

Kampen connection. That is Kenmotsu manifold  satisfying Pseudo-Projectively flat,  𝜉- Pseudo-Projectively 

flat,  𝜙-Pseudo-Projectively Semi-symmetric, Pseudo-Pseudo-Projectively flat,  𝑊8
∗-flat,   𝜉-𝑊8

∗-flat,  𝜙-𝑊8
∗- 

Semi-symmetric, Pseudo-𝑊8
∗-flat conditions with respect to the Schouten-van Kampen connection is either 

Einstein or 𝜂-Einstein or special 𝜂-Einstein manifold. 
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