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Abstract  

In this research, we introduce and represent the modified Khater method on two basic models in the optical 

fiber. These two models describe the dynamics of the wave movement in the optical fiber.  It is a new 

modification of new recent method which developed by Mostafa M. A. Khater in 2017. We implement this new 

modified technique on Schwarzian Korteweg de Vries equation and (2+1)-Ablowitz-Kaup-Newell-Segur 

equation. This modification of Khater method produces more closed solutions than many other methods. 

Schwarzian Korteweg de Vries (SKdV) equation has a closed relationship with (2+1)-Ablowitz- Kaup-Newell-

Segur equation. Schwarzian Korteweg de Vries equation prescribes the location in a micro-segment of space 

and motion of the isolated waves in varied fields which localized in a tiny portion of space. It is a great and basic 

system in fluid mechanics, nonlinear optics, plasma physics, and quantum field theory. 

Keywords: Schwarzian Korteweg de Vries equation; (2+1)-Ablowitz-Kaup-Newell-Segur equation; Modified 

Khater method; Optical traveling wave solutions; Exact, solitary and approximate solutions. 

1. Introduction  

Partial differential equations (PDEs) that’s the important part of the math that praises his names to many strands 

of science and that's because of his potential and abilities to characterize many cosmic and natural phenomena 

like physics and chemistry and biology, fluid mechanics, hydrodynamics, optics, plasma physics and other 

strands of science and knowledge. Especially, when Zabusky & Kruskal (1965) introduced the mean of the soliton. 

This is because of its analytical and descriptive capabilities for these different models where many recent 

techniques have emerged and scientists have developed ways to access the exact and individual solutions to 

these models.  For example of these methods: 

The (
𝐺′

𝐺
) –expansion method, the e−ϕ(ξ) –expansion method, modified Kudryashov methods, modified (

𝐺′

𝐺
) –

expansion method, the (
𝐺′

𝐺
,

1

𝐺
) –expansion method, extended e−ϕ(ξ) –expansion method, the extended tanh-

function method, the Kudryashov, Novel (
𝐺′

𝐺
) –expansion method, the improved tan (

ϕ

2
)-expansion method, 

modified simple equation method, Khater method  , Adomian decomposing method and so [1]- [24]. 

Khater method is looked like one of the latest methods in this zone as it just detected from just one year and 

also it features the results of some techniques so that, these techniques can be examined as a particular 

condition of  Khater technique. 

Schwarzian Korteweg de Vries equation was displayed by Krichever and Novikov in the following form: see [25]  

Ψ𝑡

Ψ𝑥

+ (
Ψ𝑥 𝑥

Ψ𝑥

)
𝑥

−
1

2
 (

Ψ𝑥 𝑥

Ψ𝑥

)
2

= 0. (1.1) 

where  Ψ  satisfies Newton's equation of motion in a cubic potential. This equation has also another form as 

below: 

mailto:rony_695@yahoo.com
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https://en.wikipedia.org/wiki/Equation_of_motion
https://en.wikipedia.org/w/index.php?title=Cubic_potential&action=edit&redlink=1
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𝑆𝑡 +
1

4
 𝑆𝑥 𝑥 𝑧 −

𝑆𝑥  𝑆𝑥 𝑧

2 𝑆
−

𝑆 𝑥 𝑥 𝑆𝑧

4 𝑆
+

𝑆𝑥
2 𝑆𝑧

2 𝑆2
−

𝑆𝑥

8
 ∫ (

𝑆𝑥
2

𝑆2
)

𝑧

𝑑𝑥 = 0. (1.2) 

This equation plays an important and vital role in a nonlocal form and a right-moving soliton. Schwarzian 

Korteweg de Vries is so closed to (2+1) Ablowitz–Kaup–Newell–Segur (AKNS) equation. 

In this research, we implement a modified Khater method on these two modules. We demonstrate the basic 

steps of this new method. Through this study, the reader observes the extent of rapprochement between both 

methods but the only difference between the two methods is how much convergence solutions are given using 

modified Khater method for approximate solutions which speeds up modified Khater method is the successful 

extension of Khater method. 

 The vestiges of this paper are regulated as below: In section 2, we give the structure of modified Khater method. 

In section 3, we implement the modified Khater method to gain new structure of the exact and solitary traveling 

wave solutions of the two mentioned models indicated above. In section 4, conclusions are given. 

2. Structure of modified Khater method: 

Examination the nonlinear partial differential equation be in the below: 

𝑄(𝑢, 𝑢𝑥 , 𝑢𝑦, 𝑢𝑧 , 𝑢𝑡 , 𝑢𝑥 𝑥, 𝑢𝑥 𝑦 , 𝑢𝑥 𝑧, 𝑢𝑥 𝑡 , … ) = 0, (2.1) 

where 𝑄  is the polynomial function of 𝑢 .  Utilizing the wave transformation: 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑥 + 𝑦 + 𝑧 − 𝑐𝑡. (2.2) 

We convert a nonlinear partial differential equation (NLPDE) into the nonlinear ordinary differential equation 

(NLODE) to be in the following form: 

Ψ(𝑢, 𝑢′, 𝑢′′, 𝑢′′′, … ) = 0, (2.3) 

where Ψ  is the function of 𝑢(𝜉) . Balancing the highest order derivative term and nonla inear term which 

involved in Eq. (2.3).  

Step 1. According to the modified Khater method, the general exact solution of an ordinary differential 

equation in the below: 

𝑢(𝜉) = ∑ 𝑎𝑖  𝑎
𝑖 𝑓(𝜉).

𝑁

𝑖=0

 (2.4) 

Such that 𝑓(𝜉) depends on the following auxiliary equation: 

𝑓′(𝜉) =
1

ln (𝑎)
[𝛼 𝑎−𝑓(𝜉) + 𝛽 + 𝜎 𝑎𝑓(𝜉)], (2.5) 

where (𝛼, 𝛽, 𝜎) are arbitrary constant will identify later.  

Step 2.  Evaluate the positive integer 𝑁 in Eq. (2.4) and that by using the balance technique. 

https://en.wikipedia.org/wiki/Soliton


To Physics Journal Vol 1 No 3 (2018) ISSN- 2581-7396                                     http://purkh.com/index.php/tophy 

236 

𝐷 [
𝑑𝜖𝑢(𝜉)

𝑑 𝜉𝜖 ] = 𝑁 + 𝜖, 𝐷 [𝑢𝜖 (
𝑑𝜖𝑢(𝜉)

𝑑 𝜉𝜖 )
𝑠

 ] = 𝜖 𝑁 + 𝑠(𝑁 + 𝜖). 

Step 3. Replacement Eq. (2.4) into Eq. (2.4) and collecting all the terms of the same power of  [ai f(ξ), i =

0,1,2, … ]. We obtain a system of algebraic equations. Solving this system by utilization any computer program 

to obtain all previous parameters. 

3. Application: 

In this section, we implement modified Khater method for these two models (the Schwarzian Korteweg de Vries 

equation and (2+1)-Ablowitz-Kaup-Newell-Segur equation) and also we show the exact traveling wave solutions 

and solitary wave solutions of each one of these models. 

3.1. The Schwarzian Korteweg de Vries equation:  

Consider the Schwarzian Korteweg de Vries equations [26]- [30]  in the following form: 

{
4 𝑢2 𝑣𝑥 − 4 𝑢 𝑢𝑥𝑣 + 𝑢2 𝑢𝑥 𝑥 𝑧 − 𝑢 𝑢𝑥 𝑥𝑢𝑧 − 3 𝑢 𝑢𝑥𝑢𝑥 𝑧 + 3 𝑢𝑥

2𝑢𝑧 −  𝑢4 𝑢𝑧 = 0,
𝑢𝑡 − 𝑣𝑡 = 0.

 (3.1.1) 

Using the wave transformation  [u(x, z, t) = u(ξ), v(x, z, t)ξ = v(ξ), ξ = x + z − c t]  and integration the second 

equation with zero constant of integration in the system then substituting the obtained equation into the first 

equation of the system, we obtain: 

𝑢2 𝑢′′′ − 4 𝑢 𝑢′𝑢′′ +  3 𝑢′2
− 𝑢4 𝑢′ = 0. (3.1.2) 

 Balancing the highest order derivative term and nonlinear term [𝑢2 𝑢′′′&𝑢4 𝑢′] ⇒  (𝑁 = 1). According to the 

general solution of the suggested method (modified Khater method), we get the general exact solution of Eq. 

(3.1.2) in the following form: 

𝑢(𝜉) = 𝑎0 + 𝑎1 𝑎𝑓(𝜉). (3.1.3) 

Substituting Eq. (3.1.3) and its derivatives into Eq. (3.1.2). Collecting the coefficient of the same power of 

[ai f(ξ), i = 0,1,2, … ] and equating the result equations with zero. We get the system of algebraic equation. Solving 

this system by any computer program or even manually, we obtain:   

Case 1. 

𝜎 =
𝑎0 (𝛽 − 𝑎0)

𝛼
,  𝑎0 = 𝑎0 , 𝑎1 =

𝑎0 (𝛽 − 𝑎0)

𝛼
 . 

Consequently, we obtain the exact traveling solution in the form: 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 − 𝑎0)

𝛼
  𝑎𝑓(𝜉)]. (3.1.4) 

 Therefore, the solitary traveling wave solutions are in the following form: 

When (𝛽2 − 4𝛼𝜎 < 0 & 𝜎 ≠ 0): 
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𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 − 𝑎0)

𝛼
  (

−𝛽

2𝜎
+

√−(𝛽2 − 4𝛼𝜎)

2𝜎
 𝑡𝑎𝑛 (

√−(𝛽2 − 4𝛼𝜎)

2
 𝜉))], (3.1.5) 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 − 𝑎0)

𝛼
  (

−𝛽

2𝜎
+

√−(𝛽2 − 4𝛼𝜎)

2𝜎
 𝑐𝑜𝑡 (

√−(𝛽2 − 4𝛼𝜎)

2
 𝜉))]. (3.1.6) 

  When (𝛽2 − 4𝛼𝜎 > 0 & 𝜎 ≠ 0): 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 − 𝑎0)

𝛼
  (

−𝛽

2𝜎
−

√(𝛽2 − 4𝛼𝜎)

2𝜎
 𝑡𝑎𝑛ℎ (

√(𝛽2 − 4𝛼𝜎)

2
 𝜉))], (3.1.7) 

 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 − 𝑎0)

𝛼
  (

−𝛽

2𝜎
−

√(𝛽2 − 4𝛼𝜎)

2𝜎
 𝑐𝑜𝑡ℎ (

√(𝛽2 − 4𝛼𝜎)

2
 𝜉))]. (3.1.8) 

When (𝛽2 + 4𝛼2 > 0 & 𝜎 ≠ 0 & 𝜎 = −𝛼): 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 − 𝑎0)

𝛼
  (

𝛽

2𝛼
+

√𝛽2 + 4𝛼2

2𝛼
 𝑡𝑎𝑛ℎ (

√𝛽2 + 4𝛼2

2
 𝜉))], (3.1.9) 

𝑢(𝜉) = 𝑎0 [1
 (𝛽 − 𝑎0)

𝛼
  (

𝛽

2𝛼
+

√𝛽2 + 4𝛼2

2𝛼
 𝑡𝑎𝑛ℎ (

√𝛽2 + 4𝛼2

2
 𝜉))]. (3.1.10) 

When (𝛽2 + 4𝛼2 < 0 & 𝜎 ≠ 0 & 𝜎 = −𝛼): 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 − 𝑎0)

𝛼
  (

𝛽

2𝛼
−

√−(𝛽2 + 𝛼2)

2𝛼
 𝑡𝑎𝑛 (

√−(𝛽2 + 𝛼2)

2
 𝜉))], (3.1.11) 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 − 𝑎0)

𝛼
  (

𝛽

2𝛼
−

√−(𝛽2 + 𝛼2)

2𝛼
 𝑐𝑜𝑡 (

√−(𝛽2 + 𝛼2)

2
 𝜉))]. (3.1.12) 

When (𝛽2 − 4𝛼2 > 0 & 𝜎 ≠ 0 & 𝜎 = 𝛼): 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 − 𝑎0)

𝛼
  (−

𝛽

2𝛼
+

√−(𝛽2 − 4𝛼2)

2𝛼
 𝑡𝑎𝑛 (

√−(𝛽2 − 4𝛼2)

2
 𝜉))], (3.1.13) 

 

(𝜉) = 𝑎0 [1 +
 (𝛽 − 𝑎0)

𝛼
  (−

𝛽

2𝛼
+

√−(𝛽2 − 4𝛼2)

2𝛼
 𝑐𝑜𝑡 (

√−(𝛽2 − 4𝛼2)

2
 𝜉))]. (3.1.14) 

When (𝛽2 − 4𝛼2 > 0 & 𝜎 ≠ 0 & 𝜎 = 𝛼): 
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𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 − 𝑎0)

𝛼
  (−

𝛽

2𝛼
−

√(𝛽2 − 4𝛼2)

2𝛼
 𝑡𝑎𝑛ℎ (

√(𝛽2 − 4𝛼2)

2
 𝜉))], (3.1.15) 

  

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 − 𝑎0)

𝛼
  (−

𝛽

2𝛼
−

√(𝛽2 − 4𝛼2)

2𝛼
 𝑐𝑜𝑡ℎ (

√(𝛽2 − 4𝛼2)

2
 𝜉))]. (3.1.16) 

When (𝛼𝜎 < 0 & 𝜎 ≠ 0 & 𝛽 = 0): 

𝑢(𝜉) = 𝑎0 [1 −
 (𝛽 − 𝑎0)

𝛼
  

√−𝛼 𝜎

𝜎
 𝑡𝑎𝑛ℎ (

√−𝛼 𝜎

2
 𝜉)], (3.1.17) 

  

𝑢(𝜉) = 𝑎0 [1 −
 (𝛽 − 𝑎0)

𝛼
  

√−𝛼 𝜎

𝜎
  𝑐𝑜𝑡ℎ (

√−𝛼 𝜎

2
 𝜉)]. (3.1.18) 

When (𝛼𝜎 > 0 & 𝜎 ≠ 0 & 𝛽 = 0): 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 − 𝑎0)

𝛼
  

√𝛼 𝜎

𝜎
  𝑡𝑎𝑛(√𝛼 𝜎 𝜉)], (3.1.19) 

  

𝑢(𝜉) = 𝑎0 [1 −
 (𝛽 − 𝑎0)

𝛼
  √

𝛼

𝜎
  𝑐𝑜𝑡(√𝛼 𝜎 𝜉)]. (3.1.20) 

When (𝛽 = 0 &𝛼 = −𝜎): 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 − 𝑎0)

𝛼
  (

𝑒2 𝛼 𝜉 + 1

𝑒2 𝛼 𝜉 − 1
)]. (3.1.21) 

When (𝛽 = 𝑘 &𝛼 = 2 𝑘&𝜎 = 0): 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 − 𝑎0)

𝛼
   (𝑒𝑘 𝜉 − 2)]. (3.1.22) 

When (𝛽 = 0 &𝛼 = 𝜎): 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 − 𝑎0)

𝛼
  [𝑡𝑎𝑛(𝛼 𝜉 + 𝐶)] ]. (3.1.23) 

When (𝜎 = 0): 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 − 𝑎0)

𝛼
  (𝑒𝛽 𝜉 −

𝛼

 𝛽
)]. (3.1.24) 

Where (𝐶 &𝐾) are arbitrary constants. 
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Case 2. 

𝜎 = −
𝑎0 (𝛽 + 𝑎0)

𝛼
,  𝑎0 = 𝑎0 , 𝑎1 =

𝑎0 (𝛽 + 𝑎0)

𝛼
 . 

Where  [𝐶 &𝐾] are arbitrary constants. 

Consequently, we obtain the exact traveling solution in the form: 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 + 𝑎0)

𝛼
  𝑎𝑓(𝜉)]. (3.1.25) 

 Therefore, the solitary traveling wave solutions are in the following form: 

When (𝛽2 − 4𝛼𝜎 < 0 & 𝜎 ≠ 0): 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 + 𝑎0)

𝛼
  (

−𝛽

2𝜎
+

√−(𝛽2 − 4𝛼𝜎)

2𝜎
 𝑡𝑎𝑛 (

√−(𝛽2 − 4𝛼𝜎)

2
 𝜉))], (3.1.26) 

 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 + 𝑎0)

𝛼
  (

−𝛽

2𝜎
+

√−(𝛽2 − 4𝛼𝜎)

2𝜎
 𝑐𝑜𝑡 (

√−(𝛽2 − 4𝛼𝜎)

2
 𝜉))]. (3.1.27) 

  When (𝛽2 − 4𝛼𝜎 > 0 & 𝜎 ≠ 0): 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 + 𝑎0)

𝛼
  (

−𝛽

2𝜎
−

√(𝛽2 − 4𝛼𝜎)

2𝜎
 𝑡𝑎𝑛ℎ (

√(𝛽2 − 4𝛼𝜎)

2
 𝜉))], (3.1.28) 

 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 + 𝑎0)

𝛼
  (

−𝛽

2𝜎
−

√(𝛽2 − 4𝛼𝜎)

2𝜎
 𝑐𝑜𝑡ℎ (

√(𝛽2 − 4𝛼𝜎)

2
 𝜉))]. (3.1.29) 

When (𝛽2 + 4𝛼2 > 0 & 𝜎 ≠ 0 & 𝜎 = −𝛼): 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 + 𝑎0)

𝛼
  (

𝛽

2𝛼
+

√𝛽2 + 4𝛼2

2𝛼
 𝑡𝑎𝑛ℎ (

√𝛽2 + 4𝛼2

2
 𝜉))], (3.1.30) 

 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 + 𝑎0)

𝛼
  (

𝛽

2𝛼
+

√𝛽2 + 4𝛼2

2𝛼
 𝑡𝑎𝑛ℎ (

√𝛽2 + 4𝛼2

2
 𝜉))]. (3.1.31) 

When (𝛽2 + 4𝛼2 < 0 & 𝜎 ≠ 0 & 𝜎 = −𝛼): 
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𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 + 𝑎0)

𝛼
  (

𝛽

2𝛼
−

√−(𝛽2 + 𝛼2)

2𝛼
 𝑡𝑎𝑛 (

√−(𝛽2 + 𝛼2)

2
 𝜉))], (3.1.32) 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 + 𝑎0)

𝛼
  (

𝛽

2𝛼
−

√−(𝛽2 + 𝛼2)

2𝛼
 𝑐𝑜𝑡 (

√−(𝛽2 + 𝛼2)

2
 𝜉))]. (3.1.33) 

When (𝛽2 − 4𝛼2 > 0 & 𝜎 ≠ 0 & 𝜎 = 𝛼): 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 + 𝑎0)

𝛼
  (−

𝛽

2𝛼
+

√−(𝛽2 − 4𝛼2)

2𝛼
 𝑡𝑎𝑛 (

√−(𝛽2 − 4𝛼2)

2
 𝜉))], (3.1. 34) 

 

(𝜉) = 𝑎0 [1 +
 (𝛽 + 𝑎0)

𝛼
  (−

𝛽

2𝛼
+

√−(𝛽2 − 4𝛼2)

2𝛼
 𝑐𝑜𝑡 (

√−(𝛽2 − 4𝛼2)

2
 𝜉))]. (3.1.35) 

When (𝛽2 − 4𝛼2 > 0 & 𝜎 ≠ 0 & 𝜎 = 𝛼): 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 + 𝑎0)

𝛼
  (−

𝛽

2𝛼
−

√(𝛽2 − 4𝛼2)

2𝛼
 𝑡𝑎𝑛ℎ (

√(𝛽2 − 4𝛼2)

2
 𝜉))], (3.1.36) 

  

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 + 𝑎0)

𝛼
  (−

𝛽

2𝛼
−

√(𝛽2 − 4𝛼2)

2𝛼
 𝑐𝑜𝑡ℎ (

√(𝛽2 − 4𝛼2)

2
 𝜉))]. (3.1.37) 

When (𝛼𝜎 < 0 & 𝜎 ≠ 0 & 𝛽 = 0): 

𝑢(𝜉) = 𝑎0 [1 −
 (𝛽 + 𝑎0)

𝛼
  

√−𝛼 𝜎

𝜎
 𝑡𝑎𝑛ℎ (

√−𝛼 𝜎

2
 𝜉)], (3.1.38) 

  

𝑢(𝜉) = 𝑎0 [1 −
 (𝛽 + 𝑎0)

𝛼
  

√−𝛼 𝜎

𝜎
  𝑐𝑜𝑡ℎ (

√−𝛼 𝜎

2
 𝜉)]. (3.1.39) 

When (𝛼𝜎 > 0 & 𝜎 ≠ 0 & 𝛽 = 0): 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 + 𝑎0)

𝛼
  

√𝛼 𝜎

𝜎
  𝑡𝑎𝑛(√𝛼 𝜎 𝜉)], (3.1.40) 

  

𝑢(𝜉) = 𝑎0 [1 −
 (𝛽 + 𝑎0)

𝛼
  √

𝛼

𝜎
  𝑐𝑜𝑡(√𝛼 𝜎 𝜉)]. (3.1.41) 
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When (𝛽 = 0 &𝛼 = −𝜎): 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 + 𝑎0)

𝛼
  (

𝑒2 𝛼 𝜉 + 1

𝑒2 𝛼 𝜉 − 1
)]. (3.1.42) 

When (𝛽 = 𝑘 &𝛼 = 2 𝑘&𝜎 = 0): 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 + 𝑎0)

𝛼
   (𝑒𝑘 𝜉 − 2)]. (3.1.43) 

When (𝛽 = 0 &𝛼 = 𝜎): 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 + 𝑎0)

𝛼
  [𝑡𝑎𝑛(𝛼 𝜉 + 𝐶)] ]. (3.1.44) 

When (𝜎 = 0): 

𝑢(𝜉) = 𝑎0 [1 +
 (𝛽 + 𝑎0)

𝛼
  (𝑒𝛽 𝜉 −

𝛼

 𝛽
)]. 

 

(3.1.45) 

Where (𝐶 &𝐾) are arbitrary constants. 

3.2. The (2+1)-Ablowitz-Kaup-Newell-Segur equation: 

Examine the (2+1)-Ablowitz-Kaup-Newell-Segue equation [26] and [31] - [34]   in the following form: 

4 𝑢𝑥 𝑡 + 𝑢𝑥 𝑥 𝑥 𝑧 + 8 𝑢𝑥 𝑧𝑢𝑥 + 4 𝑢𝑧 𝑢𝑥 𝑥 = 0. (3.2.1) 

Using the wave transformation [𝑢(𝑥, 𝑧, 𝑡) = 𝑢(𝜉), 𝑣(𝑥, 𝑧, 𝑡)𝜉 = 𝑣(𝜉), 𝜉 = 𝑥 + 𝑧 − 𝑐 𝑡], we get: 

−4 𝑐 𝑢′ + 𝑢′′′ + 6 𝑢′2
= 0. (3.2.2) 

 Balancing the highest order derivative term and nonlinear term [ 𝑢′′′& 𝑢′2] ⇒  (𝑁 = 1). According to the general 

solution of the suggested method (modified Khater method), we get the general exact solution of  Eq. (3.2.2)  is 

the same to general exact solution of  Eq. (3.1.2) . Substituting Eq. (3.1.3) and its derivatives into Eq. (3.2.2). 

Collecting the coefficient of the same power of [𝑎𝑖 𝑓(𝜉), 𝑖 = 0,1,2, … ] and equating the result equations with zero. 

We get the system of algebraic equation. Solving this system by any computer program or even manually, we 

obtain:   

𝛼 =
𝛽2 − 4 𝑐

4 𝜎
, 𝑎0 = 𝑎0, 𝑎1 = −𝜎. 

Consequently, the exact traveling wave solution is in below: 

𝑢(𝜉) = 𝑎0 − 𝜎 𝑎𝑓(𝜉). (3.2.3) 

Therefore, the solitary traveling wave solutions are in the following form: 

When (β2 − 4ασ < 0 & σ ≠ 0): 
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𝑢(𝜉) = 𝑎0 − 𝜎 [
−β

2σ
+

√−(β2 − 4ασ)

2σ
 tan (

√−(β2 − 4ασ)

2
 ξ)], (3.2.4) 

 

𝑢(𝜉) = 𝑎0 − 𝜎 [
−β

2σ
+

√−(β2 − 4ασ)

2σ
 cot (

√−(β2 − 4ασ)

2
 ξ)]. (3.2.5) 

  When (β2 − 4ασ > 0 & σ ≠ 0): 

𝑢(𝜉) = 𝑎0 − 𝜎 [
−β

2σ
−

√(β2 − 4ασ)

2σ
 tanh (

√(β2 − 4ασ)

2
 ξ)], (3.2.6) 

 

𝑢(𝜉) = 𝑎0 − 𝜎 [
−β

2σ
−

√(β2 − 4ασ)

2σ
 coth (

√(β2 − 4ασ)

2
 ξ)]. (3.2.7) 

When (β2 + 4α2 > 0 & σ ≠ 0 & σ = −α): 

𝑢(𝜉) = 𝑎0 − 𝜎 [
β

2α
+

√β2 + 4α2

2α
 tanh (

√β2 + 4α2

2
 ξ)], (3.2.8) 

 

𝑢(𝜉) = 𝑎0 − 𝜎 [
β

2α
+

√β2 + 4α2

2α
 coth (

√β2 + 4α2

2
 ξ)]. (3.2.9) 

When (β2 + 4α2 < 0 & σ ≠ 0 & σ = −α): 

𝑢(𝜉) = 𝑎0 − 𝜎 [
β

2α
−

√−(β2 + 4α2)

2α
 tan (

√−(β2 + 4α2)

2
 ξ)], (3.2.10) 

 

𝑢(𝜉) = 𝑎0 − 𝜎 [
β

2α
−

√−(β2 + 4α2)

2α
 cot (

√−(β2 + 4α2)

2
 ξ)]. (3.2.11) 

When (β2 − 4α2 < 0 & σ ≠ 0 & σ = α): 

𝑢(𝜉) = 𝑎0 − 𝜎 [−
β

2α
+

√−(β2 − 4α2)

2α
 tan (

√−(β2 − 4α2)

2
 ξ)], (3.2.12) 

 

𝑢(𝜉) = 𝑎0 − 𝜎 [−
β

2α
+

√−(β2 − 4α2)

2α
 cot (

√−(β2 − 4α2)

2
 ξ)]. (3.2.13) 

When (β2 − α2 > 0 & σ ≠ 0 & σ = α): 
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𝑢(𝜉) = 𝑎0 − 𝜎 [−
β

2α
−

√(β2 − 4α2)

2α
 tanh (

√(β2 − 4α2)

2
 ξ)], (3.2.14) 

 

𝑢(𝜉) = 𝑎0 − 𝜎 [−
β

2α
−

√(β2 − 4α2)

2α
 coth (

√(β2 − 4α2)

2
 ξ)]. (3.2.15) 

When (ασ < 0 & σ ≠ 0 & β = 0): 

𝑢(𝜉) = 𝑎0 + √−α σ tanh (
√−α σ

2
 ξ), (3.2.16) 

𝑢(𝜉) = 𝑎0 + √−α σ coth (
√−α σ

2
 ξ), (3.2.17) 

When (𝛼𝜎 > 0 & 𝜎 ≠ 0 & 𝛽 = 0): 

𝑢(𝜉) = 𝑎0 − √α σ 𝑡𝑎𝑛(√𝛼 𝜎 𝜉), (3.2.18) 

𝑢(𝜉) = 𝑎0 + √α σ 𝑡𝑎𝑛(√𝛼 𝜎 𝜉). (3.2.19) 

When (β = 0 &α = −σ): 

𝑢(𝜉) = 𝑎0 − 𝜎 [
𝑒2 𝛼 𝜉 + 1

𝑒2 𝛼 𝜉 − 1
]. (3.2.20) 

When (α = σ = 0): 

𝑢(𝜉) = 𝑎0 − 𝜎𝑒  𝛽 𝜉 . (3.2.21) 

When (β2 = α σ): 

𝑢(𝜉) = 𝑎0 +
−2α𝜎 (β ξ + 2)

β2 ξ
. (3.2.22) 

When (β = k &α = 2 k&σ = 0): 

𝑢(𝜉) = 𝑎0 − 𝜎[𝑒𝑘 𝜉 − 2]. (3.2.23) 

When (β = k &σ = 2 k&α = 0): 

𝑢(𝜉) = 𝑎0 −
𝜎ek ξ

1 − ek ξ
. (3.2.24) 

When (α = 0): 

𝑢(𝜉) = 𝑎0 −
𝜎𝛽 𝑒𝛽 𝜉

2 −  𝜎  𝑒𝛽 𝜉
. (3.2.25) 

When (β = σ = 0): 
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𝑢(𝜉) = 𝑎0 − 𝜎 𝛼 𝜉. (3.2.26) 

When (β = α = 0): 

𝑢(𝜉) = 𝑎0 +
𝜎

𝜎 𝜉
. (3.2.27) 

When (β = 0 &α = σ): 

𝑢(𝜉) = 𝑎0 − 𝜎𝑡𝑎𝑛(𝛼 𝜉 + 𝐶). (3.2.28) 

When (σ = 0): 

𝑢(𝜉) = 𝑎0 − 𝜎 [𝑒𝛽 𝜉 −
𝛼

 𝛽
]. (3.2.29) 

Where k, C are arbitrary constant. 

4. Figures: 
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Fig.1 Contour plot of Eq. (3.1.5) when (𝛼 = 3, 𝛽 = 2, 𝜎 = 4, 𝑎0 = 5, 𝑧 = 1, 𝑐 = −1). 

 

Fig.2  3D-plot of Eq. (3.1.5) when (𝛼 = 3, 𝛽 = 2, 𝜎 = 4, 𝑎0 = 5, 𝑧 = 1, 𝑐 = −1). 

 

Fig.3  Contour plot of Eq. (3.1.6) when (𝛼 = 1, 𝛽 = 3, 𝜎 = 2, 𝑎0 = 5, 𝑧 = 1, 𝑐 = −1). 
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Fig.4  3D-plot of Eq. (3.1.6) when (𝛼 = 1, 𝛽 = 3, 𝜎 = 2, 𝑎0 = 5, 𝑧 = 1, 𝑐 = −1). 

 

Fig.5  Contour plot of Eq. (3.1.11) when (𝛼 = 2, 𝛽 = 1, 𝜎 = −2, 𝑎0 = 5, 𝑧 = 1, 𝑐 = −1). 
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Fig.6  3D-plot of Eq. (3.1.11) when (𝛼 = 2, 𝛽 = 1, 𝜎 = −2, 𝑎0 = 5, 𝑧 = 1, 𝑐 = −1). 

 

Fig.7  Contour plot of Eq. (3.1.21) when (𝛼 = −2, 𝛽 = 0, 𝜎 = 2, 𝑎0 = 5, 𝑧 = 1, 𝑐 = −1). 
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Fig.8  3D-plot of Eq. (3.1.21) when (𝛼 = −2, 𝛽 = 0, 𝜎 = 2, 𝑎0 = 5, 𝑧 = 1, 𝑐 = −1). 

 

Fig.9  Contour plot of Eq. (3.1.25) when (𝛼 = 1, 𝛽 = 0, 𝜎 = 1, 𝑎0 = 5, 𝑧 = 1, 𝑐 = −1). 
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Fig.10  3D-plot of Eq. (3.1.25) when (𝛼 = 1, 𝛽 = 0, 𝜎 = 1, 𝑎0 = 5, 𝑧 = 1, 𝑐 = −1). 

 

Fig.11  Contour plot of Eq. (3.1.42) when (𝛼 = 2, 𝛽 = 0, 𝜎 = 1, 𝑎0 = 5, 𝑧 = 1, 𝑐 = −1). 
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Fig.12  3D-plot of Eq. (3.1.42) when (𝛼 = 2, 𝛽 = 0, 𝜎 = 1, 𝑎0 = 5, 𝑧 = 1, 𝑐 = −1). 

 

Fig.13  Contour plot of Eq. (3.1.51) when (𝛼 = 1, 𝛽 = 2, 𝜎 = 0, 𝑎0 = 5, 𝑧 = 1, 𝑐 = −1). 
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Fig.14  3D-plot of Eq. (3.1.51) when (𝛼 = 1, 𝛽 = 2, 𝜎 = 0, 𝑎0 = 5, 𝑧 = 1, 𝑐 = −1). 

5. Conclusion: 

In this paper, we introduce a new modification of the Khater method. Khater method is considered as one of 

the most powerful generalized methods in nonlinear partial differential equation field. Especially, it concludes 

all solutions that can be obtained by using many different methods. We implement the modified Khater method 

on two significant modules in mathematical physics. We find a new form of solitary traveling solutions for 

Schwarzian Korteweg de Vries is so closed to (2+1) Ablowitz-Kaup-Newell-Segur (AKNS) equation. We plot 

some of our obtained solutions Fig. [1] - Fig. [14] to show the solitary and contour plot of these solutions. The 

earned solitary solutions show the physical features of each model. This renders examination the capabilities of 

these models and how they are applied in normal life. This helps in the progress and well-being of mankind. 
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