# The Classification of Permutation Groups with Maximum Orbits

Behname Razzaghmaneshi

Department of Mathematics Islamic Azad University, Talesh Branch, Talesh, Iran

Email: behnamrazagi@yahoo.com

#### Abstract

Let G be a permutation group on a set  $\Omega$  with no fixed points in  $\Omega$  and let m be a positive integer. If no element of G moves any subset of  $\Omega$  by more than m points (that is, if  $|\Gamma^g \setminus \Gamma| \leq m$  for every  $\Gamma \subseteq \Omega$  and  $g \in G$ ), and the lengths two of orbits is p, and the rest of orbits have lengths equal to 3. Then the number t of G-orbits in  $\Omega$  is at most  $\lfloor \frac{1}{2}(3m-2) + \frac{5}{2p} \rfloor$ . Moreover, we classify all groups for  $t = \lfloor \frac{1}{2}(3m-2) + \frac{5}{2p} \rfloor$  is hold. (For  $x \in R, \lfloor x \rfloor$  denotes the greatest integer less than or equal to x.)

Keywords: permutation group, bounded movement, orbits.

2000 AMS classification subjects: 20B25

#### Introduction

Let G be a permutation group on a set  $\Omega$  with no fixed points in  $\Omega$  and let m be a positive integer. If for a subset  $\Gamma$  of  $\Omega$  the size  $|\Gamma^g \setminus \Gamma|$  is bounded, for  $g \in G$ , we define the movement of  $\Gamma$  as  $move(\Gamma) = \max_{g \in G} |\Gamma^g \setminus \Gamma|$ . If  $move(\Gamma) \leq m$  for all  $\Gamma \subseteq \Omega$ , then G is said to have *bounded movement* and the *movement* of G is define as the maximum of move( $\Gamma$ ) over all subsets  $\Gamma$ , that is,

$$m := move(G) := sup\{|\Gamma^g \setminus \Gamma||\Gamma \subseteq \Omega, g \in G\}.$$

This notion was introduced in [3]. By [3,Theorem 1], if G has bounded movement m, then  $\Omega$  is finite. Moreover both the number of G-orbits in  $\Omega$  and the length of each G-orbit are bounded above by linear functions of m.In particular it was shown that the number of G-orbits is at most 2m-1. In this paper we will improve this to  $\frac{1}{2}(3m-2) + \frac{5}{2p}$ , if the lengths two of orbits is p, and the rest of orbits have lengths equal to 3. If m=1, then  $t = \frac{1}{p}$ ,  $|\Omega| = 2$  and G is  $Z_2$ or  $S_2$ . So in this paper we suppose that m greater than 1. We present here a classification of all groups for which the bound  $\frac{1}{2}(3m-2) + \frac{5}{2p}$  is attained. We shall say that an orbit of permutation group is nontrivial if its length is greater than 1. The main result is the following theorem.

**Theorem 1.1.** Let m be a positive integer and suppose that G is a permutation group on a set  $\Omega$  such that G has no fixed points in  $\Omega$ , and G has bounded movement equal to m. If the lengths two of orbits is p, and the rest of orbits have lengths equal to 3. Then the number t of G-orbits in  $\Omega$  is at most  $\frac{1}{2}(3m-2) + \frac{5}{2p}$ . And also if  $t = \frac{1}{2}(3m-1) + \frac{1}{p}$ , then m is product of p in power of 3, and G is order pm, all G-orbits have length 3, and the pointwise stabilizers of the G-orbits are precisely the  $\frac{1}{2}(3m-2) + \frac{5}{2p}$  distinct subgroups of G of index 3. Note that an orbit of a permutation group is non trivial if its length is greater than 1. The groups described below are examples of permutation groups with bounded movement equal to m which have exactly  $\frac{1}{2}(3m-2) + \frac{5}{2p}$  nontrivial orbits.

## 1 Examples and Preliminaries

Let  $1 \neq g \in G$  and suppose that g in its disjoint cycle

representations has t nontrivial cycles of lengths  $l_1, ..., l_t$ , say. We might represent g as  $g = (a_1 a_2 ... a_{l_1})(b_1 b_2 ... b_{l_2}) ... (z_1 z_2 ... z_{l_t})$ . Let  $\Gamma(g)$  denote a subset of  $\Omega$  consisting  $\lfloor l_i/2 \rfloor$  points from the *i*th cycle, for each i, chosen in such a way that  $\Gamma(g)^g \cap \Gamma(g) = \emptyset$ . For example, we could choose



 $\Gamma(g) = \{a_2, a_4, ..., a_{k_1}, b_2, b_4, ..., b_{k_2}, ..., z_2, z_4, ..., z_{k_i}\}$ , where  $k_i = l_i - 1$  if  $l_i$  is odd and  $k_i = l_i$  if  $l_i$  is even. Note that  $\Gamma(g)$  is not uniquency determined as it depends on the way each cycle is written. For any set  $\Gamma(g)$  consists of every point of very cycle of g. From the definition of  $\Gamma(g)$  we see that

$$|\Gamma(g)^g \setminus \Gamma(g)| = |\Gamma(g)| = \sum_{i=1}^t \lfloor l_i/2 \rfloor.$$

The next lemma shows that this quantity is an upper bound for  $|\Gamma^g \setminus \Gamma|$  for an arbitrary subset  $\Gamma$  of  $\Omega$ .

**Lemma 2.1.** [5, Lemma 2.1]. Let G be a permutation group on a set  $\Omega$  and suppose that  $\Gamma \subseteq \Omega$ . Then for each  $g \in G, |\Gamma^g \setminus \Gamma| \leq \sum_{i=1}^t \lfloor l_i/2 \rfloor$ , where  $l_i$  is the length of the *i*th cycle of g and t is the number of nontrivial cycles of g in its disjoint cycle representation. This upper bound is attained for  $\Gamma = \Gamma(g)$  defined above. Now we will show that there certainly is an infinite family of 3-groups for which the maximum bound obtained in Theorem 1.1 holds .

**Example 2.2**. Let r be a positive integer, let  $G:=Z_p^2Z_3^{r-2}$ , let  $t:=\frac{1}{2}(3m-2)+\frac{5}{2p}$ , and let the lengths two of orbits is p, and the rest of orbits have lengths equal to 3, and  $H_1, ..., H_t$  be an enumeration of the subgroups of index 3 in G. Define  $\Omega_i$  to be the coset space of  $H_i$  in G and  $\Omega := \Omega_1 \bigcup ... \bigcup \Omega_t$ . If  $g \in G \setminus 1$  then g lies in  $\frac{1}{2}(p^2.3^{r-1}-1) + \frac{5}{2p}$  of the groups  $H_i$  and therefore acts on  $\Omega$  as a permutation with  $\frac{1}{2}(p^2.3^{r-1}-2) + \frac{3}{2p} = m-1$  fixed points and  $3^{r-3}$  disjoint 3-cycles. Taking one point from each of these 3-cycles to form a set  $\Gamma$  we see that  $m(G) \geq 3^{r-3}$ , and it is not hard to prove that in fact  $m(G) = 3^{r-3}$ . Thus  $n = 2t = (p^2.3^{r-1}-2) + \frac{5}{p} =$ . This proves bound of G-orbits of Theorem 1.1 . It follows that G has bounded movement equal to m, and G has  $\frac{1}{2}(3m-2) + \frac{5}{2n}$  nontrivial orbits in  $\Omega$ .

When m > 1 the classification in Theorem 1.1 follows immediately from the following theorem about subsets with movement m.

**Definition** Let G be a permutation group on a set  $\Omega$  with orbits  $\Omega_i$ , for  $i \in I$ . We shall say that a subset  $\Gamma \subseteq \Omega$  cuts across each G-orbit if  $\Gamma_i := \Gamma \cap \Omega_i \notin \{\Phi, \Omega_i\}$ , for every  $i \in I$ .

**Theorem 2.3.** Let  $GlSym(\Omega)$  be a permutation group with t orbits for positive integer t, such that the lengths two of orbits is p, and the rest of orbits have lengths equal to 3. Moreover suppose that  $\Gamma \subseteq \Omega$  such that move

 $(\Gamma) = m > 1$ , and  $\Gamma$  cuts across each G-orbit. Then  $t \leq \frac{1}{2}(3m-2) + \frac{5}{2p}$  and moreover, if  $t = \frac{1}{2}(3m-2) + \frac{5}{2p}$ , then: (1) G is an 3-group and all G-orbits of G has size 3; (2) If the rank of the group G is r then  $r \ge 2, t = (\frac{1}{2}(p^2.3^{r-1}-2)+\frac{5}{2p})$  and  $m = p(3^{r-3});$ 

(3)If one of the G-orbits is 3, then The t different G-orbits are (isomorphic to) the coset spaces of the  $\left(\frac{1}{2}(p^2.3^{r-1}-2)+\frac{5}{2n}\right)$  different subgroups of index 3 in G.

#### $\mathbf{2}$ Proof of Theorem 2.3.

**P**roof: Let  $\Omega_1, \ldots, \Omega_t$  be t orbits of G of lengths  $n_1, \ldots, n_t$ . Choose  $\alpha_i \in \Omega$  and let  $H_i := G_{\alpha_i}$ , so that  $|G: H_i| = n_i$ . For  $g \in G$ , let  $\Gamma(g) = \{\alpha_i | \alpha_i^g \neq \alpha_i\}$  be every second point of every cycle of g and let  $\gamma(g) := |\Gamma(g)|$ . Since  $\Gamma(g) \cap \Gamma(g)^g = \emptyset$  it follows that  $\gamma(g) \leq m$  for all  $g \in G$ . Let  $\Omega := \Omega_1 \cup \ldots \cup \Omega_t$ , and let G and  $H_1, \ldots, H_t$  denote the finite permutation groups on  $\Omega$  induced by G and  $H_1, \ldots, H_t$  respectively. Then  $n_i = |\underline{G}_1 : \underline{H}_i|$ .

For  $g \in G$ , let  $\underline{g} \in \underline{G}$  denote the permutation of  $\underline{\Omega}$  induced by g. Then as  $\gamma(1_G) = 0$ , we have  $\sum_{\underline{g} \in \underline{G}} \gamma(g) < m |\underline{G}|$ .

Now, Counting the pairs (g, i) such that  $g \in G$  and  $\alpha_i^g \neq \alpha_i$  gives

$$\sum_{g \in G} \gamma(g) = \sum_{i} |\{g \in G | \alpha_i^g \neq \alpha_i\}| = \sum_{i} |\{g \in G | g \notin H_i\}| = \sum_{i} (|G| - |\underline{H}_i|) = |G| \sum_{i} (1 - \frac{1}{n_i}).$$

It follows that  $\sum_i (1 - \frac{1}{n_i}) < m$ . Since  $n_i \ge 3, p^2$  for each i, it follows that  $\sum_i (1 - \frac{1}{n_i}) \ge \frac{2(p-1)}{p} + \frac{2}{3}(t-2)$  and hence

 $\frac{2(p-1)}{p} + \frac{2}{3}(t-2) < m, \text{ that is, } tl\frac{1}{2}(3m-2) + \frac{5}{2p}.$ Consequently G has at most  $\frac{1}{2}(3m-2) + \frac{5}{2p}$  orbits in  $\Omega$ . Now Let m be a positive integer greater than 1. Suppose that  $G \leq Sym(\Omega)$  with orbits  $\Omega_1, \Omega_2, ..., \Omega_t$ , where  $t = \frac{1}{2}(3m-1) + \frac{1}{p}$ . Suppose further that  $\Gamma \subseteq \Omega$  has move  $(\Gamma) = m$  and that cuts across each of the G-orbits  $\Omega_i$ . For each i set  $n_i = |\Omega_i|$  and  $\Gamma_i = \Gamma \cap \Omega_i$ . Note that  $0 < |\Gamma_i| < n_i$ . Claim 3.1 If Theorem 2.3 holds for the special case in which  $|\Gamma_i| = 1$  for  $i = 1, ..., (\frac{1}{2}(3m-2) + \frac{5}{2p})$ , then it holds in general.

**Proof**: Suppose that Theorem 2.3 holds for the case where each  $|\Gamma_i| = 1$ . For i = 1, ..., t, define  $\sum_i := {\Gamma_i^g | g \in G}$ , and note that  $|\sum_i| \ge 3$  since  $\Gamma$  cuts across  $\Omega_i$ . Set  $\Sigma = \bigcup_{i\ge 1} \sum_i$ . Then G induces a natural action on  $\Sigma$  for which the G-orbits are  $\Sigma_1, ..., \Sigma_t$ . Let  $G^{\Sigma}$  denote the permutation group induced by G on  $\Sigma$ , and let K denote the kernel of this action.

We claim that the t-element subset  $\Gamma_{\Sigma} = \{\Gamma_1, ..., \Gamma_t\} \subseteq \Sigma$  has movement equal to m relative to  $G^{\Sigma}$ , and that  $\Gamma_{\Sigma}$  cuts across each  $\Gamma^{\Sigma}$ -orbit  $\Sigma_i$ . For each  $g \in G$ ,  $|\Gamma^g - \Gamma|lm$  and hence  $|\Gamma_{\Sigma}^g - \Gamma_{\Sigma}|lm$ . Thus move  $(\Gamma_{\Sigma})lm$ . Also, Since  $|\Sigma_i| \ge 3$  and  $\Gamma_{\Sigma} \cap \Sigma_i$  Consists of the single element  $\Gamma_i$  of  $\Sigma_i$ , the set  $\Gamma_{\Sigma}$  cuts across each of the  $\frac{1}{2}(3m-2) + \frac{5}{2p}$  orbits  $\Sigma_i$ . However, it follows that the number of  $G^{\Sigma}$ - orbits is at most  $\frac{1}{2}(3move(\Gamma_{\Sigma}) - 2) + \frac{5}{2p}$ , and hence move  $(\Gamma_{\Sigma}) = m$ . Thus the hypotheses of theorem 2.3 hold for the subset  $\Gamma_{\Sigma} \subseteq \Sigma$  relative to  $G^{\Sigma}$ , and  $\Gamma_{\Sigma}$  meets each  $G^{\Sigma}$ -orbit in exactly one point. By our assumption it follows that  $t = \frac{1}{2}(p^23^{r-1} - 2)\frac{5}{2p} = \frac{1}{2}(3m-2) + \frac{5}{2p}$  for some r > 1, and that  $G^{\Sigma} = Z_3^r$  and each  $|\Sigma_i| = 3$ . Further, the subgroups  $H_i$  of G fixing  $\Gamma_i$  setwise range over the  $\frac{1}{2}(p^23^{r-1} - 2) + \frac{5}{2p}$  distinct subgroups which have index 3 in G and which contain K. In particular, for each i,  $H_i$  is normal in G and hence the  $H_i$ -orbits in  $\Omega_i$  are blocks of imprimitivity for G, and their number is at most |G:H| = 3. Since  $H_i$  fixes  $\Gamma_i$  setwise it follows that  $\Gamma_i$  is an  $H_i$ -orbit and  $n_i = 3|\Gamma_i|$ .

Let  $g \in G \setminus K$ . Then in its action on  $\Sigma$ , g moves exactly m of the  $\Gamma_i$ . Since the  $\Gamma_i$  are blocks of imprimitivity for G, each  $\Gamma_i^g$  is equal to either  $\Gamma_i$  or  $\Omega_i - \Gamma_i$ . It follows that  $|\Gamma^g \setminus G|$  is equal to the sum of the sizes of the m subsets  $\Gamma_i$ moved by g. However, since move  $(\Gamma) = m$ , each of these m subsets  $\Gamma_i$  must have size 1. Since for each i we may choose an element g which moves  $\Gamma_i$ , we deduce that each of the  $\Gamma_i$  has size 1, and that K is the identify subgroup. It follows that theorem 2.3 hold for G. Thus the claim is proved.

From now on we may and shall assume that each  $|\Gamma_i| = 1$ . Let  $\Gamma_i = \{\Omega_i\}$ . Further we may assume that  $n_1 ln_2 l... ln_t$ . For  $g \in G$  let c(g) denote the number of integers I such that  $\omega_i^g = \omega_i$ . Note that since move  $(\Gamma) = m$ , we have  $c(g) > t - m = \frac{1}{2}(3m - 2) + \frac{5}{2p} - m = \frac{m-2}{2} + \frac{5}{2p}$  and also  $c(1_G) = t > \frac{m-2}{2} + \frac{5}{2p}$ .

Lemma 3.2. If two of the orbits of G has length equal to p, then the rest orbits of G has size 3.

**Proof**: Let X denote the number of pairs (g,i) such that  $g \in G$ ,  $1 \le i \le t$ , and  $\omega_i^g = \omega_i$ . Then  $X = \sum_{g \in G} c(g)$ , and by our observations,  $X > |G| \cdot (\frac{m-2}{2} + \frac{5}{2p})$ . On the other hand, for each *i*, the number of elements of G which fix  $\omega_i$  is  $|G_{\omega_i}| = \frac{|G|}{n_i}$ , and hence  $X = |G| \sum_{i=1}^t n_i^{-1}$  If all the  $n_i \ge 3$ , and one of  $n_i$  is equal to *p*, then  $X \le |G| \cdot (\frac{2}{p} + \frac{4n-3}{3}) = |G| (\frac{2}{p} + \frac{3m-2}{6} + \frac{2}{6p} + \frac{2}{3}) \le |G| \cdot (\frac{m-2}{2} + \frac{17}{6p})$  (since  $m \ge 3$ ) which is a contradiction. Hence n=3. A similar argument to this enables us to show that except one of  $n_i$  the rest of  $n_i$  is  $n_i = 3$ , and hence that G is an 3 - group.

**Lemma 3.3.** The group  $G = Z_p^2 Z_3^r$  for some  $r \ge 2$ . Moreover for each  $n_i = 3$ , except one, the stabilizers  $G_{\omega_i}(2lilt)$  are pair wise distinct subgroups of index 3 in G, and for each  $g \ne 1, c(g) = (\frac{m-2}{2} + \frac{17}{6p})$ .

**Proof:** By Lemma 3.2, except one of  $n_i$  the rest of  $n_i$  is  $n_i = 3$ . Thus  $H := G_{\omega_i}$  is a subgroup of index 3. This time we compute the number Y of pairs (g, i) such that  $g \in G \setminus H$ , 2lilt, and  $\omega_i^g = \omega_i$ . For each such g,  $\omega_1^g \neq \omega_1$  and hence there are c(g) of these pairs with first entry g. Thus  $Y = \sum_{g \in G \setminus H} c(g) \ge |G \setminus H| (\frac{m-1}{2} + \frac{5}{2p}) = |G| (\frac{m-1}{6} + \frac{5}{6p})$ . On the other hand, for each  $i \ge 2$ , the number of elements of G, which fix  $\omega_i$  is  $|G_{\omega_i} \setminus H|$ . If  $H = G_{\omega_i}$  then  $|G_{\omega_i} \setminus H| = 0$ , while if  $G_{\omega_i} \neq H$ , then  $|G_{\omega_i} \setminus H| = \frac{|G_{\omega_i}|}{3} = \frac{|G|}{3n_i} l \frac{|G|}{9}$ . Hence

$$\begin{split} Y &= \sum_{i=2}^{t} |G_{\omega_i} \backslash H| l] \frac{|G|}{3} \sum_{i=2}^{t} \frac{1}{n_i} l \frac{|G|}{3} (\frac{2}{p} + \frac{t-2}{3}) \\ &= \frac{|G|}{3} (\frac{6+p(t-2)}{3p}) < |G| (\frac{m-2}{2} + \frac{17}{6p}) \end{split}$$

It follows that equality holds in both of the displayed approximations for Y. This means in particular that each  $n_i = 2$ , Whence  $G = Z_p Z_3^r$  for some r. Further, for each  $i \ge 3$ ,  $G_{\omega_i} \ne H$  and so  $r \ge 2$ . Arguing in the same way with H replaced by  $G_{\omega_i}$ , for some  $i \ge 2$ , we see that  $G_{\omega_i} \ne G_{\omega_j}$  if  $j \ne i$ , and also if  $g \in G_{\omega_i}$  then  $c(g) = (\frac{m-2}{2} + \frac{17}{6p})$ . Thus the stabilizers  $G_{\omega_i}(1lilt)$  are pairwise distinct, and if gl1 then  $c(g) = (\frac{m-2}{2} + \frac{17}{6p})$ . Finally we determine m.

Lemma 3.4.  $m = p(3^{r-2})$ 

**P**roof: We use the information in lemma3.3 to determine precise the quantity  $X = \sum_{g \in G} c(g) : X = t + (|G| - 1) \cdot (\frac{1}{2}(m-2) + \frac{5}{2p}) = \frac{1}{2}(3m-2) + \frac{5}{2p} + (p^2 \cdot 3^{r-2} - 1)(\frac{1}{2}(m-2) + \frac{5}{2p})$ . On the other

hand, from the proof of lemma 2.1,

$$X = |G| \sum_{i=1}^{t} n_i^{-1} = |G| \cdot \left(\frac{2}{p} + \frac{t-2}{3}\right) = p^2 \cdot 3^{r-2} \cdot \left(\frac{2}{p} + \frac{3m-2}{6} + \frac{5}{6p} - \frac{2}{3}\right).$$

Thus implies that  $m = p(3^{r-3})$ .

The proof of theorem 2.3 now follows from lemmas 3.2-3.4.

## References

- [1] L.Brailovsky, Structure of quasi-invariant sets, Arch. Math., 59 (1992), 322-326.
- [2] L.Brailovsky, D.Pasechnix, C.E.Praeger, Subsets close to invariant subset of quasi-invariant subsets for group actions ,, Proc. Amer. Math. Soc. ,123(1995),2283-2295.
- [3] C.E.Praeger, On permutation groups with bounded movement, J. Algebra, 144(1991), 436-442.
- [4] C.E.Praeger, The separation theorem for group actions, in "ordered Groups and Infinite Groups" (W.charles Holland, Ed.), *Kluwer Academic, Dordrecht/ Boston/ Lond*, 1995.
- [5] A.Hassani, M.Khayaty, E.I.Khukhro and C.E.Praeger, Transitive permutation groups with bounded movement having maximum degree. J. Algebra, 214 (1999), 317-337.
- [6] J.R.Cho, P.S.Kim, and C.E.Praeger, The maximal number of orbits of a permutation Group with Bounded Movement, J.Algebra, 214 (1999), 625-630.
- [7] P.M.Neumann, The structure of finitary Permutation groups, Arch. Math. (Basel) 27(1976), 3-17.
- [8] B.H.Neumann, Groups covered by permutable subsets, J. London Math soc., 29(1954), 236-248.
- [9] P.M.Neumann, C.E.Praeger, On the Movement of permutation Group, J.Algebra, 214, (1999)631-635.