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Abstract
Let G be a permutation group on a set Ω with no fixed points in Ω and let m be a positive integer. If no element of
G moves any subset of Ω by more than m points (that is, if |Γg \ Γ| ≤ m for every Γ ⊆ Ω and g ∈ G), and the lengths
two of orbits is p, and the rest of orbits have lengths equal to 3. Then the number t of G-orbits in Ω is at most
b 1

2 (3m− 2) + 5
2pc. Moreover, we classifiy all groups for t = b 1

2 (3m− 2) + 5
2pc is hold.(For x ∈ R, bxc denotes the

greatest integer less than or equal to x.)
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Introduction

Let G be a permutation group on a set Ω with no fixed points in Ω and let m be a positive integer. If for a subset Γ
of Ω the size |Γg \ Γ| is bounded, for g ∈ G , we define the movement of Γ as move(Γ) = maxg∈G|Γg \ Γ|. If
move(Γ) ≤ m for all Γ ⊆ Ω,then G is said to have bounded movement and the movement of G is define as the
maximum of move(Γ) over all subsets Γ, that is,

m := move(G) := sup{|Γg \ Γ||Γ ⊆ Ω, g ∈ G}.

This notion was introduced in [3]. By [3,Theorem 1],if G has bounded movement m,then Ω is finite. Moreover both
the number of G-orbits in Ω and the length of each G-orbit are bounded above by linear functions of m.In particular
it was shown that the number of G-orbits is at most 2m-1.In this paper we will improve this to 1

2 (3m− 2) + 5
2p , if

the lengths two of orbits is p, and the rest of orbits have lengths equal to 3. If m=1, then t = 1
p , |Ω| = 2 and G is Z2

or S2. So in this paper we suppose that m greater than 1. We present here a classification of all groups for which the
bound 1

2 (3m− 2) + 5
2p is attained. We shall say that an orbit of permutation group is nontrivial if its length is

greater than 1.The main result is the following theorem.

Theorem 1.1. Let m be a positive integer and suppose that G is a permutation group on a set Ω such that G has
no fixed points in Ω, and G has bounded movement equal to m . If the lengths two of orbits is p, and the rest of
orbits have lengths equal to 3. Then the number t of G-orbits in Ω is at most 1

2 (3m− 2) + 5
2p . And also if

t = 1
2 (3m− 1) + 1

p , then m is product of p in power of 3, and G is order pm, all G-orbits have length 3, and the

pointwise stabilizers of the G-orbits are precisely the 1
2 (3m− 2) + 5

2p distinct subgroups of G of index 3 .
Note that an orbit of a permutation group is non trivial if its length is greater than 1. The groups described below
are examples of permutation groups with bounded movement equal to m which have exactly 1

2 (3m− 2) + 5
2p

nontrivial orbits.

1 Examples and Preliminaries

Let 1 6= g ∈ G and suppose that g in its disjoint cycle
representations has t nontrivial cycles of lengths l1, ..., lt, say. We might represent g as
g = (a1a2...al1)(b1b2...bl

2
)...(z1z2...zlt). Let Γ(g) denote a subset of Ω consisting bli/2c points from the ith cycle , for

each i, chosen in such a way that Γ(g)g
⋂

Γ(g) = Ø. For example ,we could choose
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Γ(g) = {a2, a4, ..., ak1 , b2, b4, ..., bk2 , ..., z2, z4, ..., zkt}, where ki = li − 1 if li is odd and ki = li if li is even . Note that
Γ(g)is not uniquency determined as it depends on the way each cycle is written . For any set Γ(g) consists of every
point of very cycle of g. From the definition of Γ(g) we see that

|Γ(g)g \ Γ(g)| = |Γ(g)| =
t∑
i=1

bli/2c.

The next lemma shows that this quantity is an upper bound for |Γg \ Γ| for an arbitrary subset Γ of Ω.

Lemma 2.1. [5, Lemma 2.1]. Let G be a permutation group on a set Ω and suppose that Γ ⊆ Ω . Then for each
g ∈ G, |Γg \ Γ| ≤

∑t
i=1bli/2c, where li is the length of the ith cycle of g and t is the number of nontrivial cycles of g

in its disjoint cycle representation . This upper bound is attained for Γ = Γ(g) defined above .
Now we will show that there certainly is an infinite family of 3-groups for which the maximum bound obtained in
Theorem 1.1 holds .

Example 2.2 . Let r be a positive integer , let G:=Z2
pZ

r−2
3 , let t := 1

2 (3m− 2) + 5
2p , and let the lengths two of

orbits is p, and the rest of orbits have lengths equal to 3, and H1, ...,Ht be an enumeration of the subgroups of index
3 in G. Define Ωi to be the coset space of Hi in G and Ω := Ω1

⋃
...

⋃
Ωt. If g ∈ G \ 1 then g lies in

1
2 (p2.3r−1 − 1) + 5

2p of the groups Hi and therefore acts on Ω as a permutation with 1
2 (p2.3r−1 − 2) + 3

2p = m− 1

fixed points and 3r−3 disjoint 3-cycles . Taking one point from each of these 3-cycles to form a set Γ we see that
m(G) ≥ 3r−3,and it is not hard to prove that in fact m(G) = 3r−3 . Thus n = 2t = (p2.3r−1 − 2) + 5

p =. This proves
bound of G− orbits of Theorem 1.1 . It follows that G has bounded movement equal to m, and G has
1
2 (3m− 2) + 5

2p nontrivial orbits in Ω .

When m > 1 the classification in Theorem 1.1 follows immediately from the following theorem about subsets with
movement m.

Definition Let G be a permutation group on a set Ω with orbits Ωi, for i ∈ I. We shall say that a subset Γ ⊆ Ω cuts
across each G-orbit if Γi := Γ ∩ Ωi /∈ {Φ,Ωi}, for every i ∈ I.

Theorem 2.3. Let GlSym(Ω) be a permutation group with t orbits for positive integer t, such that the lengths two
of orbits is p, and the rest of orbits have lengths equal to 3. Moreover suppose that Γ ⊆ Ω such that move
(Γ) = m > 1, and Γ cuts across each G-orbit. Then t ≤ 1

2 (3m− 2) + 5
2p and moreover, if t = 1

2 (3m− 2) + 5
2p , then:

(1) G is an 3-group and all G-orbits of G has size 3 ;
(2) If the rank of the group G is r then r ≥ 2, t = ( 1

2 (p2.3r−1 − 2) + 5
2p ) and m = p(3r−3);

(3)If one of the G-orbits is 3, then The t different G-orbits are (isomorphic to) the coset spaces of the
( 1

2 (p2.3r−1 − 2) + 5
2p ) different subgroups of index 3 in G.

2 Proof of Theorem 2.3.

Proof: Let Ω1, . . . ,Ωt be t orbits of G of lengths n1, . . . , nt. Choose αi ∈ Ω and let Hi := Gαi , so that |G : Hi| = ni.
For g ∈ G, let Γ(g) = {αi|αgi 6= αi} be every second point of every cycle of g and let γ(g) := |Γ(g)| . Since
Γ(g) ∩ Γ(g)g = ∅ it follows that γ(g) ≤ m for all g ∈ G. Let Ω

¯
:= Ω1 ∪ . . . ∪ Ωt, and let G

¯
and H

¯ 1, . . . ,H¯ t
denote the

finite permutation groups on Ω
¯

induced by G and H1, . . . ,Ht respectively. Then ni = |G
¯ 1 : H

¯ i
|.

For g ∈ G, let g
¯
∈ G

¯
denote the permutation of Ω

¯
induced by g. Then as γ(1G) = 0, we have

∑
g
¯
∈G

¯
γ(g) < m|G

¯
|.

Now, Counting the pairs (g
¯
, i) such that g

¯
∈ G

¯
and αgi 6= αi gives∑

g
¯
∈G

¯

γ(g) =
∑
i

|{g
¯
∈ G

¯
|αgi 6= αi}| =

∑
i

|{g
¯
∈ G

¯
|g /∈ Hi}| =

∑
i

(|G
¯
| − |H

¯ i
|) = |G

¯
|
∑
i

(1− 1

ni
).

It follows that
∑
i(1−

1
ni

) < m. Since ni ≥ 3, p2 for each i, it follows that
∑
i(1−

1
ni

) ≥ 2(p−1)
p + 2

3 (t− 2) and hence
2(p−1)
p + 2

3 (t− 2) < m, that is, tl 12 (3m− 2) + 5
2p .

Consequently G has at most 1
2 (3m− 2) + 5

2p orbits in Ω. Now Let m be a positive integer greater than 1. Suppose

that G ≤ Sym(Ω) with orbitsΩ1,Ω2, ...,Ωt, where t= 1
2 (3m− 1) + 1

p . Suppose further that Γ ⊆ Ω has move (Γ) = m

and that cuts across each of the G-orbits Ωi. For each i set ni = |Ωi| and Γi = Γ ∩ Ωi. Note that 0 < |Γi| < ni.
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Claim 3.1 If Theorem 2.3 holds for the special case in which |Γi| = 1 for i = 1, ..., ( 1
2 (3m− 2) + 5

2p ), then it holds in
general .
Proof :Suppose that Theorem 2.3 holds for the case where each |Γi| = 1. For i = 1, ..., t, define

∑
i := {Γgi |g ∈ G},

and note that |
∑
i | ≥ 3 since Γ cuts across Ωi. Set Σ = ∪i≥1

∑
i. Then G induces a natural action on Σ for which

the G-orbits are Σ1, ...,Σt . Let GΣ denote the permutation group induced by G on Σ , and let K denote the kernel
of this action.

We claim that the t-element subset ΓΣ = {Γ1, ...,Γt} ⊆ Σ has movement equal to m relative to GΣ, and that ΓΣ cuts
across each ΓΣ-orbit Σi. For each g ∈ G, |Γg −Γ|lm and hence |ΓgΣ−ΓΣ|lm. Thus move (ΓΣ)lm. Also, Since |Σi| ≥ 3
and ΓΣ ∩ Σi Consists of the single element Γi of Σi , the set ΓΣ cuts across each of the 1

2 (3m− 2) + 5
2p orbits Σi.

However, it follows that the number of GΣ- orbits is at most 1
2 (3.move(ΓΣ)− 2) + 5

2p , and hence move (ΓΣ) = m.

Thus the hypotheses of theorem 2.3 hold for the subset ΓΣ ⊆ Σ relative to GΣ, and ΓΣ meets each GΣ-orbit in
exactly one point. By our assumption it follows that t = 1

2 (p23r−1 − 2) 5
2p = 1

2 (3m− 2) + 5
2p for some r > 1, and that

GΣ = Zr3 and each |Σi| = 3. Further, the subgroups Hi of G fixing Γi setwise range over the 1
2 (p23r−1 − 2) + 5

2p
distinct subgroups which have index 3 in G and which contain K. In particular, for each i, Hi is normal in G and
hence the Hi-orbits in Ωi are blocks of imprimitivity for G, and their number is at most |G : H| = 3. Since Hi fixes
Γi setwise it follows that Γi is an Hi -orbit and ni = 3|Γi|.

Let g ∈ G \K. Then in its action on Σ , g moves exactly m of the Γi. Since the Γi are blocks of imprimitivity for G,
each Γgi is equal to either Γi or Ωi − Γi. It follows that |Γg \G| is equal to the sum of the sizes of the m subsets Γi
moved by g. However, since move (Γ) = m, each of these m subsets Γi must have size 1. Since for each i we may
choose an element g which moves Γi , we deduce that each of the Γi has size 1, and that K is the identify subgroup.
It follows that theorem 2.3 hold for G . Thus the claim is proved .
From now on we may and shall assume that each |Γi| = 1. Let Γi = {Ωi}. Further we may assume that n1ln2l...lnt.
For g ∈ G let c(g) denote the number of integers I such that ωgi = ωi. Note that since move (Γ) = m, we have
c(g) > t−m = 1

2 (3m− 2) + 5
2p −m = m−2

2 + 5
2p and also c(1G) = t > m−2

2 + 5
2p .

Lemma 3.2. If two of the orbits of G has length equal to p, then the rest orbits of G has size 3.

Proof : Let X denote the number of pairs (g,i) such that g ∈ G, 1 ≤ i ≤ t , and ωgi = ωi. Then X =
∑
g∈G c(g),

and by our observations, X > |G|.(m−2
2 + 5

2p ). On the other hand, for each i, the number of elements of G which fix

ωi is |Gωi
| = |G|

ni
, and hence X = |G|

∑t
i=1 n

−1
i If all the ni ≥ 3, and one of ni is equal to p, then

X ≤ |G|.( 2
p + t−1

3 ) = |G|( 2
p + 3m−2

6 + 2
6p + 2

3 ) ≤ |G|.(m−2
2 + 17

6p ) (since m ≥ 3 ) which is a contradiction. Hence n=3.
A similar argument to this enables us to show that except one of ni the rest of ni is ni = 3, and hence that G is an
3− group.

Lemma 3.3. The group G = Z2
p .Z

r
3 for some r ≥ 2. Moreover for each ni = 3, except one , the stabilizers Gωi

(2lilt)

are pair wise distinct subgroups of index 3 in G, and for each g 6= 1, c(g) = (m−2
2 + 17

6p ).

Proof: By Lemma 3.2, except one of ni the rest of ni is ni = 3. Thus H := Gωi
is a subgroup of index 3. This time

we compute the number Y of pairs (g, i) such that g ∈ G \H, 2lilt , and ωgi = ωi. For each such g, ωg1 6= ω1 and
hence there are c(g) of these pairs with first entry g. Thus Y =

∑
g∈G\H c(g) ≥ |G\H|(m−1

2 + 5
2p ) = |G|(m−1

6 + 5
6p ).

On the other hand, for each i ≥ 2, the number of elements of G, which fix ωi is |Gωi\H|. If H = Gωi then

|Gωi\H| = 0, while if Gωi 6= H, then |Gωi\H| =
|Gωi

|
3 = |G|

3ni
l |G|9 . Hence

Y =
∑t
i=2 |Gωi\H|l]

|G|
3

∑t
i=2

1
ni
l |G|3 ( 2

p + t−2
3 )

= |G|
3 ( 6+p(t−2)

3p ) < |G|(m−2
2 + 17

6p )

It follows that equality holds in both of the displayed approximations for Y . This means in particular that each
ni = 2, Whence G = Zp.Z

r
3 for some r. Further, for each i ≥ 3, Gωi 6= H and so r ≥ 2. Arguing in the same way with

H replaced by Gωi
, for some i ≥ 2, we see that Gωi

6= Gωj
if j 6= i, and also if g ∈ Gωi

then c(g) = (m−2
2 + 17

6p ). Thus

the stabilizers Gωi(1lilt) are pairwise distinct , and if gl1 then c(g) = (m−2
2 + 17

6p ). Finally we determine m.

Lemma 3.4.. m = p(3r−2)

Proof: We use the information in lemma3.3 to determine precise the quantity
X =

∑
g∈G c(g) : X = t+ (|G| − 1).( 1

2 (m− 2) + 5
2p ) = 1

2 (3m− 2) + 5
2p + (p2.3r−2 − 1)( 1

2 (m− 2) + 5
2p). On the other
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hand, from the proof of lemma 2.1,

X = |G|
t∑
i=1

n−1
i = |G|.(2

p
+
t− 2)

3
) = p2.3r−2.(

2

p
+

3m− 2

6
+

5

6p
− 2

3
).

Thus implies that m = p(3r−3).
The proof of theorem 2.3 now follows from lemmas 3.2-3.4.
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