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Abstract

Let G be a permutation group on a set {2 with no fixed points in 2 and let m be a positive integer. If no element of
G moves any subset of 2 by more than m points (that is, if [T'9\ T'| < m for every I' C Q and g € G), and the lengths
two of orbits is p, and the rest of orbits have lengths equal to 3. Then the number ¢ of G-orbits in 2 is at most
[23m —2)+ %j Moreover, we classifiy all groups for t = |1(3m — 2) + %J is hold.(For = € R, |x] denotes the
greatest integer less than or equal to x.)
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Introduction

Let G be a permutation group on a set {2 with no fixed points in {2 and let m be a positive integer. If for a subset I'
of Q the size |I'9 \ T'| is bounded, for g € G , we define the movement of I' as move(I') = maxg eI \ T'|. If
move(I') < m for all I' C Q,then G is said to have bounded movement and the movement of G is define as the
maximum of move(T") over all subsets T', that is,

m = move(G) := sup{|TY \T||I' C Q,g € G}.

This notion was introduced in [3]. By [3,Theorem 1],if G has bounded movement m,then € is finite. Moreover both
the number of G-orbits in 2 and the length of each G-orbit are bounded above by linear functions of m.In particular
it was shown that the number of G-orbits is at most 2m-1.In this paper we will improve this to %(3m —-2)+ 2%, if

the lengths two of orbits is p, and the rest of orbits have lengths equal to 3. If m=1, then t = %, | =2 and G is Zy
or Ss. So in this paper we suppose that m greater than 1. We present here a classification of all groups for which the
bound %(Sm —-2)+ 2i is attained. We shall say that an orbit of permutation group is nontrivial if its length is
greater than 1.The main result is the following theorem.

Theorem 1.1. Let m be a positive integer and suppose that G is a permutation group on a set €2 such that G has
no fixed points in 2, and G has bounded movement equal to m . If the lengths two of orbits is p, and the rest of
orbits have lengths equal to 3. Then the number ¢ of G-orbits in € is at most $(3m — 2) + 257). And also if

t= %(Sm -1+ %, then m is product of p in power of 3, and G is order pm, all G-orbits have length 3, and the
pointwise stabilizers of the G-orbits are precisely the %(3m —-2)+ 2% distinct subgroups of G of index 3 .

Note that an orbit of a permutation group is non trivial if its length is greater than 1. The groups described below
are examples of permutation groups with bounded movement equal to m which have exactly %(Sm -2)+ %
nontrivial orbits.

1 Examples and Preliminaries

Let 1 # g € G and suppose that g in its disjoint cycle

representations has ¢ nontrivial cycles of lengths 1, ...,[l;, say. We might represent g as

g = (a1a2...a;, ) (b1b2...by, )...(2122...21,). Let T'(g) denote a subset of Q consisting [/;/2] points from the ith cycle , for
each i, chosen in such a way that I'(¢)? (1 T'(¢9) = @. For example ,we could choose
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T'(g9) = {az2,a4, ..., af; b2, b4, ooy bigy o 22, 24, oy 2k, b, Where k; = 1; — 1 1f [; is odd and k; = ; if [; is even . Note that
I'(g)is not uniquency determined as it depends on the way each cycle is written . For any set I'(g) consists of every
point of very cycle of g. From the definition of I'(g) we see that

t

() \L(g)l = IF(9)] = D _LLi/2).

i=1
The next lemma shows that this quantity is an upper bound for |T'Y \ I'| for an arbitrary subset I" of Q.

Lemma 2.1. [5, Lemma 2.1]. Let G be a permutation group on a set Q and suppose that I' C Q . Then for each
geG,|II\T| < ZE:l |1;/2], where [; is the length of the ith cycle of g and ¢ is the number of nontrivial cycles of g
in its disjoint cycle representation . This upper bound is attained for I' = I'(g) defined above .

Now we will show that there certainly is an infinite family of 3-groups for which the maximum bound obtained in
Theorem 1.1 holds .

Example 2.2 . Let r be a positive integer , let G::Z]%ng2 , let t = %(Sm -2)+ % , and let the lengths two of
orbits is p, and the rest of orbits have lengths equal to 3, and Hy, ..., H; be an enumeration of the subgroups of index
3 in G. Define §; to be the coset space of H; in G and Q:= Q1 (J...|lJQ:. If g € G\ 1 then g lies in

3(*.3771 = 1) + 55 of the groups H; and therefore acts on 2 as a permutation with 3(p>.3" "' = 2) + 35 =m — 1
fixed points and 3"~3 disjoint 3-cycles . Taking one point from each of these 3-cycles to form a set I' we see that
m(G) > 3773 and it is not hard to prove that in fact m(G) =373 . Thus n =2t = (p?.3"71 — 2) + % =. This proves
bound of G — orbits of Theorem 1.1 . It follows that G has bounded movement equal to m, and G has

1(3m—2) + 257) nontrivial orbits in € .

When m > 1 the classification in Theorem 1.1 follows immediately from the following theorem about subsets with
movement m.

Definition Let G be a permutation group on a set {2 with orbits €2;, for i € I. We shall say that a subset I' C () cuts
across each G-orbit if I'; :=T'NQ; ¢ {®,Q;}, for every i € I.

Theorem 2.3. Let GISym(Q) be a permutation group with ¢ orbits for positive integer ¢, such that the lengths two
of orbits is p, and the rest of orbits have lengths equal to 3. Moreover suppose that I' C 2 such that move

(T) =m > 1, and T cuts across each G-orbit. Then ¢ < (3m — 2) + 5, and moreover, if t = 3(3m — 2) + 5 , then:
(1) G is an 3-group and all G-orbits of G has size 3 ;

(2) If the rank of the group G is r then r > 2,t = (1(p?.3""1 —2) + %) and m = p(3"73);

(3)If one of the G-orbits is 3, then The ¢ different G-orbits are (isomorphic to) the coset spaces of the
(3(*371—2)+ %) different subgroups of index 3 in G.

2 Proof of Theorem 2.3.

Proof: Let Q4,...,Q; be t orbits of G of lengths nq,...,n;. Choose a; € Q and let H; := G,,, so that |G : H;| = n,.
For g € G, let I'(g) = {a;|af # a;} be every second point of every cycle of g and let v(g) := |I'(g)| . Since
L(g)NT(g)? =0 it follows that y(g) < m for all g € G. Let Q:=Q; U...UQ;, and let G and Hy, ..., H, denote the
finite permutation groups on € induced by G and Hy, ..., H; respectively. Then n; = |Gy : H;|.

For g € G, let g € G denote the permutation of © induced by g. Then as y(1g) = 0, we have deG ~v(g) < m|G].

Now, Counting the pairs (g, ) such that g € G and of # a; gives

geG ‘

> 1(9) = S Hg € Gla? # aidl = ST g € Gly & Hidl = (161 - ) = 61 Y1 - ).

K2

It follows that ). (1 — n%) < m. Since n; > 3, p? for each i, it follows that > (1 — i) >

22D | 2(¢ — 2) < m, that is, 13 (3m — 2) + 2.
Consequently G has at most %(Bm —2)+ % orbits in 2. Now Let m be a positive integer greater than 1. Suppose
that G < Sym(Q) with orbitsQy, Qa, ..., Q, where t:%(?)m -1+ %. Suppose further that ' C Q has move (I') = m

and that cuts across each of the G-orbits ;. For each i set n; = |Q;] and T'; =T N Q;. Note that 0 < |T;| < n;.

@ + %(t —2) and hence
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Claim 3.1 If Theorem 2.3 holds for the special case in which |I';| =1 for i =1,...,(3(3m —2) + 2—51)), then it holds in
general .

Proof :Suppose that Theorem 2.3 holds for the case where each |I';| = 1. For i =1, ..., ¢, define ), := {I'Y|g € G},
and note that | )", | > 3 since I' cuts across Q;. Set ¥ = U;>1 » .. Then G induces a natural action on ¥ for which
the G-orbits are 31, ..., %, . Let G* denote the permutation group induced by G on ¥ , and let K denote the kernel
of this action.

We claim that the t-element subset I's; = {T'y,...,I';} € 3 has movement equal to m relative to G?*, and that I's, cuts
across each I'Z-orbit ;. For each g € G, |I'Y —I'|lm and hence |T'%, — I's;|lm. Thus move (I's;)lm. Also, Since |Z;| > 3
and 'y N'Y; Consists of the single element I'; of 3; , the set I's cuts across each of the %(3m —2)+ 2% orbits ;.
However, it follows that the number of G*- orbits is at most (3.move(I's) — 2) + %, and hence move (I'y) = m.

Thus the hypotheses of theorem 2.3 hold for the subset I's; C ¥ relative to G*, and I's; meets each G>-orbit in
exactly one point. By our assumption it follows that ¢ = 1 (p?3"~! — 2)% =2(3m—2)+ % for some r > 1, and that
G* = Z& and each |%;| = 3. Further, the subgroups H; of G fixing I'; setwise range over the §(p*3"~! —2) + 2%
distinct subgroups which have index 3 in G and which contain K. In particular, for each ¢, H; is normal in G and
hence the H;-orbits in §2; are blocks of imprimitivity for G, and their number is at most |G : H| = 3. Since H; fixes

T; setwise it follows that I'; is an H; -orbit and n; = 3|T'].

Let g € G\ K. Then in its action on ¥ , g moves exactly m of the I';. Since the T'; are blocks of imprimitivity for G,
each I'Y is equal to either I'; or ©; — I';. It follows that [T \ G| is equal to the sum of the sizes of the m subsets T';
moved by g. However, since move (I') = m, each of these m subsets I'; must have size 1. Since for each i we may
choose an element g which moves I'; , we deduce that each of the I'; has size 1, and that K is the identify subgroup.
It follows that theorem 2.3 hold for G . Thus the claim is proved .

From now on we may and shall assume that each |T';| = 1. Let T'; = {Q;}. Further we may assume that nqlnsl...In;.
For g € G let ¢(g) denote the number of integers I such that w{ = w;. Note that since move (I') = m, we have

c(g) >t—m= %(3m72)+%7m:mT*2+% and also ¢(1g) =t > mT*QwLQ%

Lemma 3.2. If two of the orbits of G has length equal to p, then the rest orbits of G has size 3.

Proof : Let X denote the number of pairs (g,i) such that g € G, 1 <i <t¢, and w/ = w;. Then X = dec: c(g),

and by our observations, X > |G|.( msz + %) On the other hand, for each ¢, the number of elements of G which fix

w; is |Gy, | = E, and hence X = |G| ZE:I ni_l If all the n; > 3, and one of n; is equal to p, then

n;

X< |G|(% + 5 = |G\(% + 3m=2 4 é +2) <G (52 + é—;) (since m > 3 ) which is a contradiction. Hence n=3.

6
A similar argument to this enables us to show that except one of n; the rest of n; is n; = 3, and hence that G is an

3 — group.

Lemma 3.3. The group G = Z2.Z% for some r > 2. Moreover for each n; = 3, except one , the stabilizers G, (2lilt
g V4 3 K

are pair wise distinct subgroups of index 3 in G, and for each g # 1,¢(g) = (52 + é—;).

Proof: By Lemma 3.2, except one of n; the rest of n; is n, = 3. Thus H := G, is a subgroup of index 3. This time
we compute the number Y of pairs (g,4) such that g € G\ H,2lilt , and w{ = w;. For each such g, w{ # w; and
hence there are ¢(g) of these pairs with first entry g. Thus Y = EgeG\H c(g) > |G\H|(=5+ + 2%) = |G|(7"T’1 + %).
On the other hand, for each 7 > 2, the number of elements of G, which fix w; is |G, \H|. If H = G,,, then

|G, |

G, \H| = 0, while if G,,, # H, then |G, \H| = Zzid = 1919 Hence

Y = Y, [Gu \HIG Y, L1l 2 + 52)

G — m—
= G2 <12 + 4D

It follows that equality holds in both of the displayed approximations for Y. This means in particular that each

n; = 2, Whence G = Z,.Z3 for some r. Further, for each ¢ > 3,G,,; # H and so r > 2. Arguing in the same way with
H replaced by G, for some i > 2, we see that G, # G, if j # i, and also if g € G, then c(g) = (mT*Q + %). Thus
the stabilizers G, (1lilt) are pairwise distinct , and if g1 then ¢(g) = (252 + (1)—;) Finally we determine m.

Lemma 3.4.. m = p(3"~2)

Proof: We use the information in lemma3.3 to determine precise the quantity
X =Y eqcl9): X =t+ (1G] =1).(3(m = 2) + 55) = 5(3m = 2) + 55 + (p°.3"7> = 1)(5(m — 2) + %). On the other
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hand, from the proof of lemma 2.1,

t
_ 2 t—2) 2 3m-—-2 5) 2
X =|G = |GlL(F 4+ —=2) =p?3 (= —— )
G n! =l + =5 =+ =+ g = 3)

Thus implies that m = p(3"~3).
The proof of theorem 2.3 now follows from lemmas 3.2-3.4.
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