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Abstract 

This work derives the Lagrangean hydrodynamic representation of the Dirac field that, by using the minimum action 

principle in the non-Euclidean generalization, can possibly lead to the formulation of the Einstein equation as a function of 

the fermion field. The paper shows that the bi-spinor field 
1

2





 
 =  

 
 is equivalent to the mass densities 

2
1| |  ,

2
2| |   , where 

1
1

11 2

2 2
2

2

S
| | exp[ i ]

S
| | exp[ i ]


 












 


 
  

= = =   
  
 
 

, that move with momenta 

1 1p S  = −  2 2p S  = −  being subject to the non-local interaction of the theory defined quantum potential. 
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1. Introduction  

One of the intriguing problems of the theoretical physics is the integration of the general relativity with the quantum 

mechanics. The Einstein gravitation has a fully classical ambit, the quantum mechanics mainly concerns the small atomic or 

sub-atomic scale, and the fundamental interactions.  

Many are the unexplained aspects of the matter on cosmological scale [1]. Even if the general relativity has opened some 

understanding about the cosmological dynamics [2-4], the complete explanation of generation of matter and its motion 

and distribution in the universe needs the integration of the cosmological physics with the quantum one [5-11]. 

Nevertheless, difficulties arise when one attempts to apply, to the force of gravity, the standard recipe of quantum field 

theories [12-13].  

Recently, the author has shown [14] that by using the quantum hydrodynamic formalism [15-19] is possible to achieve a 

non-contradictory coupling of the boson field of the Klein-Gordon equation with the gravitational one via the derivation of 

the energy-impulse tensor [14] by using the hydrodynamic representation of the quantum mechanics. 

Moreover, the work shows that the result is independent by the initial hydrodynamic model and that it can be expressed in 

term of the standard quantum formalism [14]. 

A first outcome of the resulting quantum-gravitational model shows that the energy of the quantum potential gives an 

important contribution to the space-time curvature and in the definition of the cosmological constant [14] leading to a 

value that agrees with the order of magnitude of the measured one. 

Another measurable output of the quantum-gravitational theory is the detailed description of the gravitational field of 

antimatter. Many and discordant are the hypotheses on the gravitational features of the antimatter [20-25]. The 

hydrodynamic model allows the explicit calculation about the Newtonian weak gravity interaction between matter and 

antimatter [25].  

Moreover, the theory shows that at the Planck scale, due to the repulsive force of the (non-local) quantum potential (that 

originates the uncertainty relations) the formation of a black hole with a mass smaller than that one of the Planck mass is 

forbidden [26]. 

The objective of this work is to derive the Lagrangean hydrodynamic representation. of the Dirac field that, by using the 

minimum action principle, can possibly lead, in the non-Euclidean generalization, to the formulation of the Einstein 

equation for the fermion field.  

2. Results and Discussion 

The section is organized as follows: in the sub-section 2.1, the hydrodynamic formulation of the Dirac equation is carried 

out; in sub-section 2.2, the Lagrangean quantum motion equations for the Dirac field are derived; in sub-section 2.3 the 

hydrodynamic energy-impulse tensor density (EITD) of the field is calculated and, in sub-section 2.4, the generalization to 

the non-Euclidean space-time as well as the analytical procedure for the definition of the gravitational equation for the 

Dirac field is outlined. 

 2.1. The hydrodynamic formulation of Dirac equation  

The Dirac equation  
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where ),( i 0=  are the 4-D extended Pauli matrices [16], where 
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where F  is the electromagnetic (em) tensor [27]. The analougus of equation (2.1.12) in bi-spinor form is given by Birula 

et al. [16] and reads 
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and equating the real and imaginary part of the spinor KGE (2.1.12), it follows both the quantum hydrodynamic Hamilton-

Jacobi motion equation [14,16] (see appendix B) that reads 
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that, being the hydrodynamic spinorial KGEs (2.1.11-2) coupled each other (through the em tensor) leads to conservation 

of the overall current  
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that by using (2.1.7-8), leads to 
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in agreement with the standard output. 

The hydrodynamic Hamilton-Jacobi equation applied to eigenstates 
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the Hamilton-Jacobi equation (2.1.17) that, as a function of the spinors components, reads 
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from where, by using the notation 
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where ( k )
  represents the “mechanical moment”. From (2.1.22, 2.1.26) it follows that the Lagrangean  
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2.2. The Lagrangean motion equations for generic superposition of Dirac field 
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Moreover, from (2.2.1) the hydrodynamic momentum ip  , the Lagrangean function iL  and the 
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By introducing (2.1.30) in (2.2.11) it is possible to obtain the hydrodynamic equation of motion for the free KGEs (2.1.9) or 

(2.1.12) whose stationary solutions (satisfying the irrotational condition [14,16]) (i.e., eigenstates) and their linear 

superpositions are the solutions of the fermion field.  

2.3. The hydrodynamic energy-impulse tensor of the Dirac field 
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Moreover, by using the expression of the action as a function of the field  
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(see (2.3.1-2)) it is possible to obtain the expression of the EITD that is independent by the hydrodynamic formalism as 
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 It is noteworthy to observe that result (2.3.10) takes only into account irrotational states of the hydrodynamic treatment 

that belong to the quantum mechanics. 
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2.4. The Gravitational Equation of the Fermion Field 

The motivation of the present work consists in defining an analytical procedure to derive the gravitational equation for the 

classical Dirac field.  

This objective is planned to be achieved by assuming that the hydrodynamic representation of the Dirac bi-spinor field, 

that is depicted by mass densities 
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 under the action of the quantum potential (2.1.18), corresponds to a physical 

reality whose Einstein equation actually describes its gravitational effect. This postulate can be justified by the empirical 

existence of the quantum potential given by the Bohm-Aharonov effect [15]. 

By assuming the physics covariance, the generalization of the Dirac equation to the curved space-time can be defined. 

Then, it is possible to obtain the metric of the space-time, from the gravity equation derived by applying the minimum 

action principle to the overall hydrodynamic action of both the Dirac and the gravitational field. This procedure can be 

fulfilled in a similar way as done for the scalar boson field [14] where the obtained gravitational equation leads to a 

cosmological constant value, due to the zero-point vacuum energy, that agrees with the astronomical observations [14].  

The resulting gravity equation will contain the explicit coupling with the Dirac (classical) field (overcoming the limit of the 

semiclassical approximation [14]). Once the system of Dirac equation, coupled to the gravitational one, is defined in the 

curved space-time, then the quantization procedure can be applied both in near-Minkowski space-time (when the particle 

mass densities are very far prom the Plankian one, as in the standard model) and in very high curved space-time where 

particles with Plankian mass densities have to be described by high energy QFT. 

Conclusions 

This work derives the Lagrangean hydrodynamic representation of the Dirac field. The paper shows that the evolution of 

the bi-spinor field 
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 is equivalent to the motion of the mass densities 
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, that move with momenta 1 1p S  = −  2 2p S  = − and that 

are subject to the non-local interaction of the theory derived quantum potential. The expression of the quantum potential 

as well as of the hydrodynamic energy-impulse tensor is explicitly derived as a function of the charged fermion field 

regardless the hydrodynamic formalism.  
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Appendix A 

From the identity 
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where F  is the em tensor. For obtaining the identity (A.4-6), the continuity and derivable properties of    have also 

been used.  

Appendix B 

By using the identity (2.16), the equation (2.12) reads 
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and, by dividing each component by 
iS

exp i  
 
 

, where i =1,2 , to 
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Moreover, by grouping the terms and equating the real part of the equation, it follows that  
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and, by dividing each component by i| |  , where i =1,2 , that 
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leading to the final expression 
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where the quantum potential of the Dirac KGE reads 
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