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Abstract: 

 Effects of partial replications of the star portion of the Central Composite Design (CCD) on the alternative axial 

distances were evaluated by comparing the performances of the replicated variations of the CCD in the spherical 

regions. The fractions of design space graphs (FDSG) of the star-replicated CCDs in the spherical region were 

plotted as well as the variance dispersion graph (VDG). The replication of the star portion of the CCD improved 

the prediction variance characteristics of the variations of the CCD in the spherical design regions.   
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1 Introduction 

The concept of replication of factorial components of the designs other than the centre point of the design was 

first introduced by Dykstra (1959). He argued that the measure of error obtained in factorial experiments in 

which each factor combination is run once does not provide true estimate of the experimental error in estimating 

the factor effects since the measure of the experimental error is obtained from the scatter among resulting 

measurements from design samples. This measure of experimental error, he considered to be the same as having 

repeated measures on one sample. Therefore, Dykstra (1959) proposed changing the experimental conditions 

after each run in order to obtain real duplicates that will provide true estimate of the experimental error even 

though this may incur higher number of experimental runs and cost of experimentation. 

The idea of replicating factorial designs was extended to the replication of the cube and star portions of the 

central composite designs by Dykstra (1960).  He argued that replicating only at the centre could be misleading 

since there is no assurance that the experimental error will be constant throughout the entire design region. He 

pointed out that variability might increase away from the centre of the design such that the estimate of the 

experimental error may be too small for proper evaluation of the coefficients of the second-order models. The 

cube and star portions of the CCD were examined for partial replication and suggestions made on possible 

advantages of replicating these portions of the CCD. 

Draper (1982) examined the appropriate number of centre points that offers minimum prediction variance for 

central composite and Box-Behnken designs. To achieve this, he considered three variations of the CCD, namely: 

(i) one cube plus two stars, (ii) one cube plus one star and (iii) two cubes plus one star, for k = 5, 6, 7 and 8 

factors. The designs are evaluated by varying the number of centre points to know the design option that 

minimizes the integrated variance function proposed by Draper in the study. 

Focus on improving prediction variance characteristics of the central composite design through the replication 

of cube and star portions of the design was recommended by Giovannitti-Jensen and Myers (1989).The variance 

dispersion graph developed by Giovannitti-Jensen and Myers (1989) for evaluating the prediction variances of 

response surface designs was extended to the central composite design with star replications by Borkowski 

(1995). The procedure adopted by Borkowski (1995) for the variance dispersion graph involved the development 

of analytical procedure as opposed to the Fortran-based programme used by Giovannitti-Jensen and Myers 

(1989) which becomes almost impossible to use for higher number of factors. 

Borkowski (1995) approach has been adopted since its introduction as easier and more reliable approach for 

plotting variance dispersion graphs of the central composite designs. Chigbu et al. (2009) and Ukaegbu and 

Chigbu (2015a, 2015b) are some of the authors that have utilized the approach in plotting variance dispersion 

graphs for the evaluation of the central composite designs in both the spherical and cuboidal design regions. 

The same approach has been extended to the evaluation of prediction variance properties of split-plot central 

composite designs by Wesley et al. (2009). 
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Works by Chigbu and Ohaegbulem (2011) and Ukaegbu (2017) involved the evaluation and comparisons of the 

partially replicated variations of the central composite designs using single value criteria like the D- and G- 

criteria. In general, their works have shown that replicating the cube and star portions of the central composite 

designs does not improve the values of the D- and G-efficiencies of the design. Therefore, in this work, attention 

was paid mainly on the evaluation of the prediction variance characteristics of the central composite designs 

using the variance dispersion graphs and fraction of design space graphs when only the star portion is replicated. 

Onyishi and Eze (2020) studied three axial distances as alternatives to the existing axial distances of the Central 

Composite Design (CCD) in spherical design regions with the aim of providing formidable alternatives to the 

existing axial distances of the CCD whose prediction properties are less extreme and more stable in the cuboidal 

design regions. The three alternative axial distances, namely the arithmetic, harmonic and geometric axial 

distances for spherical regions, were developed algebraically based on the concepts of the three Pythagorean 

means. The strengths and weaknesses of the alternative axial distances were validated by comparing their 

performances with the existing axial distances in the spherical regions. They used D- and G-efficiencies criteria   

for comparison. Their results show that spherical region in the three alternative axial distances are consistently 

better in terms of the D- and G-efficiencies. 

2 Methodology  

2.1 Axial Distance 

The axial distance is developed using the three classical Pythagorean means namely the arithmetic mean, 

harmonic mean and geometric means. 

The arithmetic mean is given by 
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where 1 2, ,..., nx x x  are sets of observations. 

The geometric means is given by  
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where ia  are set of data 

2.2 Rotatable Axial Distance 

 Dykstra (1960) gave the value of the rotatable axial distance with cube and star replications, 
1

n  and 
2

n , 

respectively as 
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With the replication of the star only, the rotatable axial distance becomes 
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This axial distance, 4
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=  , will be used to develop another set of arithmetic, harmonic and geometric axial 

distances that accommodate the replication of the star portions of the central composite designs (CCD). 

The new sets of axial distances for the spherical region are presented below. 

For the arithmetic axial distance,  
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For the harmonic axial distance, 
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For the geometric axial distance, 
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2.3 Prediction Variance 

The prediction variance is given by 

( )
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where, 

( )'X X  and ( )
1

'X X
−

 are information matrix and its inverse respectively. 

The Scaled Prediction Variance (SPV) of equation (9) is  
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The unknown parameter 
2( )  makes it difficult to use equation (10). Onukogu 1997 assume

2 1 = . This is to 

eliminate the unknown parameter. 

In equation (10) N is the cost of experimentation for larger designs which is scaled. However must 

experimenter prefer to use unscaled prediction variance given by  
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where ( )kkkk xxxxxxxx 121

22

11  ..., , ; ..., , ; ..., , ,1 −=mx  is the vector of design points in the design space.

 1 2, ,..., kx x x are the linear model, 
2 2 2

1 2, ,..., kx x x  are the quadratic model and 1 2 1,..., k kx x x x−  are the 

mixed components of the model. 

2.4  Graphical Comparison 

The variance dispersion graphs (VDG) and fraction of design space graphs (FDSG) were used in comparing the 

alternative axial distances for the central composite designs with the existing axial distances in the spherical 

regions. As earlier pointed out, single point criteria like the D- and G-efficiencies cannot completely reflect the 

performances of a design throughout the entire design region. The graphical methods possess this unique 

quality and could reveal points of strengths and weaknesses of the competing designs within the design region 

by displaying the designs performances throughout the design space (Li et al, 2009 and Chigbu et al, 2009).The 

variance dispersion graphs (VDG) assess the prediction variance properties of the designs under study by 

displaying their scaled prediction variance performances at every point radius in the design space. A design with 

low and stable scaled prediction variances at every point radius is preferred. The fractions of design space graphs 

(FDSG) assess the prediction variance characteristics of competing designs by displaying the scaled prediction 

variances of the designs per volume of the design space (Ozol-Godfrey et al, 2005). Therefore, a design with 

small and stable scaled prediction variance at every fraction of the design space is preferred. The term ‘stability’ 

refers to a design maintaining small prediction variance over substantial portion of the design space or the 

entire design region. The variance dispersion graphs were plotted in MATLAB software package (Version 2014a) 

with the aid of computer programs developed in this work. The fraction of design space graphs were plotted in 

MATLAB software package (Version 2014a) after the fractions of design space and corresponding scaled 

prediction variance have been computed in Design Expert software package, Version 11. Three centre points 

were considered for each design for all the k factors under consideration.  

3 Results and Discussions 

The catalogue of values for the arithmetic, harmonic and geometric axial distances in the spherical region 

when the star point is replicated for k = 2 to 10 factors are presented in Tables 1 and 2, respectively for 
2

n = 

2 and 3.  

TABLE 1: Catalogue of Alpha Values for the Spherical Region with n2 = 2 

K f 2n2k 
S

                 P                R                AS
              HS

                 GS  

2 

3 

4 

5 

6 

7 

8 

9 

10 

 

22 

23 

24 

25 

26 

26-1 

27 

27-1 

27-2 

28 

28-1 

28-2 

29 

8 

12 

16 

20 

24 

24 

28 

28 

28 

32 

32 

32 

36 

1.4142          1.1892          1.1892            1.2642          1.2558            1.2599 

1.7321          1.3161          1.4142            1.4874          1.4675            1.4772 

2.0000          1.4142          1.6818            1.6987          1.6651            1.6818       

2.2361          1.4954          2.0000            1.9105          1.8565            1.8840 

2.4495          1.5651          2.3784            2.1300          2.0441            2.0891 

2.4495          1.5651          2.0000            2.0049        1.9390            1.9719 

2.6458          1.6266          2.8284            2.3699          2.2283            2.3003 

2.6458          1.6266          2.3784            2.2169          2.1228            2.1712 

2.6458          1.6266          2.0000            2.0908          2.0097            2.0494 

2.8284          1.6818          3.3636            2.6246          2.4088            2.5198 

2.8284          1.6818          2.8284            2.4462          2.3047            2.3784 

2.8284          1.6818          2.3784            2.2962          2.1920            2.2449 

3.0000          1.7321         4.0000           2.9107          2.5847              2.7496 
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29-1 

29-2 

210 

210-1 

210-2 

210-3 

36 

36 

40 

40 

40 

40 

3.0000          1.7321          3.3636            2.6986          2.4835            2.5951 

3.0000          1.7321          2.8284            2.5202          2.3730            2.4495 

3.1623          1.7783          4.7568            3.2325          2.7553            2.9907 

3.1623          1.7783          4.0000            2.9802          2.6582            2.8228 

3.1623          1.7783          3.3636            2.7681          2.5513            2.6644 

3.1623          1.7783          2.8284            2.5897          2.4348            2.5149 

 

TABLE 2: Catalogue of Alpha Values for the Spherical Region with n2 = 3 

K f 2n2k 
S

                P                R                 AS
             HS

                 GS  

2 

3 

4 

5 

6 

7 

8 

9 

10 

 

22 

23 

24 

25 

26 

26-1 

27 

27-1 

27-2 

28 

28-1 

28-2 

29 

29-1 

29-2 

210 

210-1 

210-2 

210-3 

12 

18 

24 

30 

36 

36 

42 

42 

42 

48 

48 

48 

54 

54 

54 

60 

60 

60 

60 

1.4142          1.1892          1.0746            1.2260          1.2104            1.2181 

1.7321          1.3161          1.2779            1.4420          1.4153            1.4282 

2.0000          1.4142          1.5197            1.6446          1.6085            1.6259 

2.2361          1.4954          1.8072            1.8462          1.7972            1.8214 

2.4495          1.5651          2.1491            2.0546          1.9835            2.0197 

2.4495          1.5651          1.8072            1.9406          1.8744            1.9064 

2.6458          1.6266          2.5558            2.2760          2.1676            2.2239 

2.6458          1.6266          2.1491            2.1405          2.0575           2.0991 

2.6458          1.6266          1.8072            2.0265          1.9404           1.9813 

2.8284          1.6818          3.0393            2.5165          2.3489            2.4361 

2.8284          1.6818          2.5558            2.3553          2.2398            2.2994 

2.8284          1.6818          2.1491            2.2198          2.1224            2.1703 

3.0000          1.7321          3.6144            2.7822          2.5266            2.6581 

3.0000          1.7321          3.0393            2.5905          2.4199            2.5089 

3.0000          1.7321          2.5558            2.4293          2.3042            2.3681 

3.1623          1.7783          4.2983            3.0796          2.6997            2.8913 

3.1623          1.7783          3.6144            2.8517          2.5969            2.7291 

3.1623          1.7783          3.0393            2.6600          2.4843            2.5759 

3.1623          1.7783          2.5558            2.4988          2.3625            2.4313 

 

It could be observed from comparing the values in Tables 1 and 2 that replicating the star portion of the central 

composite design reduces the rotatable, arithmetic, harmonic and geometric axial distances for the spherical 

region. The consequences of the reduction of the axial distances will now be measured on the prediction 

variance characteristics of the star-replicated central composite designs. The variance dispersion graphs and 

fraction of design space graphs of the star-replicated CCD are presented henceforth.  
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FIG. 1: VDG for Two-Factor Star-Replicated CCD with n2 = 2 in Spherical Region 

 

FIG. 2: VDG for Two-Factor Star-Replicated CCD with n2 = 3 in Spherical Regio 
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FIG. 3: VDG for Three-Factor Star-Replicated CCD with n2 = 2 in Spherical Region 

 

FIG. 4: VDG for Three-Factor Star-Replicated CCD with n2 = 3 in Spherical Region 
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FIG. 5: VDG for Four-Factor Star-Replicated CCD with n2 = 2 in Spherical Region 

 

FIG. 6: VDG for Four-Factor Star-Replicated CCD with n2 = 3 in Spherical Region 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

radius

s
c
a
le

d
 p

re
d
ic

ti
o
n
 v

a
ri
a
n
c
e

 

 

Spherical alpha

Arithmetic alpha

Rotatable alpha

Practical alpha

Harmonic alpha

Geometric alpha

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

radius

s
c
a
le

d
 p

re
d
ic

ti
o
n
 v

a
ri
a
n
c
e

 

 

Spherical alpha

Arithmetic alpha

Rotatable alpha

Practical alpha

Harmonic alpha

Geometric alpha



MathLAB Journal Vol 7(2020) ISSN: 2582-0389                                                      http://www.purkh.com/index.php/mathlab 

 
 

147 

 

FIG. 7: VDG for Five-FactorStar-Replicated CCD with n2 = 2 in Spherical Region 

 

FIG. 8: VDG for Five-FactorStar-Replicated CCD with n2 = 3 in Spherical Region 
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FIG. 9: VDG for Six-FactorStar-Replicated CCD with n2 = 2 in Spherical Region 

 

FIG. 10: VDG for Six-FactorStar-Replicated CCD with n2 = 3 in Spherical Region 
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FIG. 11: VDG for Seven-FactorStar-Replicated CCD with n2 = 2 in Spherical Region 

 

FIG. 12: VDG for Seven-Factor Star-Replicated CCD with n2 = 3 in Spherical Region 
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FIG. 13: VDG for Eight-Factor Star-Replicated CCD with n2 = 2 in Spherical Region 

 

FIG. 14: VDG for Eight-Factor Star-Replicated CCD with n2 = 3 in Spherical Region 
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displayed the worst scaled prediction variance distribution with the highest scaled prediction variance values 

for all the factors and for 
2

n  = 2 and 3 replications of the star portion. This is followed by the CCD with 

practical axial distance. 

Should the experimenter decide to harness the advantages of replicating the star portion of the CCD in 

predicting responses in the spherical region, the CCD with arithmetic axial distance should be the ideal choice. 

The fact that these competing designs have equal number of experimental runs and centre points shows that 

the best design in terms of small and stable scaled prediction variance has no undue advantage over the other 

designs. 

Figures 15- 28 are the fraction of design space graphs (FDSG) 

 

FIG. 15: FDSG for Two-Factor Star-Replicated CCD with n2 = 2 in Spherical Region 
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FIG. 16: FDSG for Two-Factor Star-Replicated CCD with n2 = 3 in Spherical Region 

 

FIG. 17: FDSG for Three-Factor Star-Replicated CCD with n2 = 2 in Spherical Region 

 

FIG. 18: FDSG for Three-Factor Star-Replicated CCD with n2 = 3 in Spherical Region 
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FIG. 19: FDSG for Four-Factor Star-Replicated CCD with n2 = 2 in Spherical Region 

 

FIG. 20: FDSG for Four-Factor Star-Replicated CCD with n2 = 3 in Spherical Region 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4

5

6

7

8

9

10

11

12

fraction of design space

s
c
a
le

d
 p

re
d
ic

ti
o
n
 v

a
ri
a
n
c
e

 

 

Spherical alpha

Arithmetic alpha

Rotatable alpha

Practical alpha

Harmonic alpha

Geometric alpha

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

6

7

8

9

10

11

12

13

14

15

fraction of design space

s
c
a
le

d
 p

re
d
ic

ti
o
n
 v

a
ri
a
n
c
e

 

 

Spherical alpha

Arithmetic alpha

Rotatable alpha

Practical alpha

Harmonic alpha

Geometric alpha



MathLAB Journal Vol 7(2020) ISSN: 2582-0389                                                      http://www.purkh.com/index.php/mathlab 

 
 

154 

 

FIG. 21: FDSG for Five-Factor Star-Replicated CCD with n2 = 2 in Spherical Region 

 

FIG. 22: FDSG for Five-Factor Star-Replicated CCD with n2 = 3 in Spherical Region 
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FIG. 23: FDSG for Six-Factor Star-Replicated CCD with n2 = 2 in Spherical Region 

 

FIG. 24: FDSG for Six-Factor Star-Replicated CCD with n2 = 3 in Spherical Region 
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FIG. 25: FDSG for Seven-Factor Star-Replicated CCD with n2 = 2 in Spherical Region 

 

FIG. 26: FDSG for Seven-Factor Star-Replicated CCD with n2 = 3 in Spherical Region 
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FIG. 27: FDSG for Eight-Factor Star-Replicated CCD with n2 = 2 in Spherical Region 

 

FIG. 28: FDSG for Eight-Factor Star-Replicated CCD with n2 = 3 in Spherical Region 
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with 3n
2
= . The CCD with spherical axial distance gives the worst prediction variance performances with the 

highest and most unstable scaled prediction variances for 2n
2
=  and 3 and for all the factors under 

consideration. This is followed by the CCD with practical axial distance which displayed the second worst scaled 

prediction variance characteristics throughout the entire design space. The graphs did not reflect any 

improvement in the prediction capabilities of the CCDs with spherical and practical axial distances with the 

replication of the star portion. 

4  Conclusion 

In conclusion, the replication of the star portion of the CCD improved the prediction variance characteristics of 

the variations of the CCD in the spherical regions. However, the variation of the CCD with arithmetic axial 

distance is the smallest and most stable scaled prediction variance characteristics in the spherical region as 

displayed in the VDG and FDSG. 
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