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Abstract

In this article we will presented a new definition of the function leZ, B (2).

Some elementary properties of the new pW,Z, B (z) are presented and his Laplace trans-
form is obtained. Also it has been shown that the fractional Riemann-Liouville integral
transform such functions with powers multipliers into functions of the same form with a
very interesting relation between indices
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I Preliminares

The importance of the role played by the Wright function W, s(z) in partial differential equation
of fractional order is well known and was widely treated in papers by several authors including
Gorenflo, Luchko, Mainardi (cf. [5]), Mainardi (cf. [9]), Mainardi, Pagnini (cf. [10]).

Romero - Cerutti (cf. [14]) introduce a generalization of the Wright function denoted by
W), 5(2), that we will named the k-Wright function, in whose definition is used the k-Gamma
function I'y(z) and the k-Pochhammer symbol (), defined Diaz and Pariguan (cf. [2]) .

Definition 1. Let k£ € RT 2, 3,7 € C, Re(a) > 0,Re() > 0.The k-Wrigth function is
defined as

wo _ ) I.1
k,a,ﬁ(z) Z Fk(OéTL + 6) (n')2 ( )
where (7). is the k-Pochhammer symbol given by

(Vnk =7y +E) (v +2k) ... (v + (n — 1)k)

and I'y(2) is the k-Gamma function ' (z)
o tk
[i(z) = / e w T 2eCikeRT,R(2) >0 (1.2)
0
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Recently, K.S. Gehlot (cf.[4]) has introduced a modification of the k-Gamma function by
means of the following integral

e.) tk
Lr(z) = / e rt*ldt, z€Cik,peRY R(z)>0 (1.3)
0

Also, he has define a new Pochhammer symbol

e = (2)(Z40) - (2r2w) - (s 1) 1)
= Zﬂ?—w ;2€ C,R(2) >0 (I.5)

where k,p € R™,n € N and also establishes the relation between the function introduced by
him and k-Gamma and the clasical Gamma function . In fact, we have following.

Lemma 1. For the p-k-Gamma function, the k-Gamma function and the classical Gamma
function it is verified:

z

k) 2€Cik,peRYR(2z) >0 (1.6)

p\i pF
JTu() = (£) " Tu(z) = E-1(
And, for the ,(2),, Pochhammer symbol, we have the following relation
Lemma 2. For the p-k-Pochhammer symbol, the k-Pochhammer symbol and the classical
Pochhammer symbol it has

p(2)nk = (%)n () =p"(2)n ;2€C;kpeR" R(z) >0 (1.7)

The proof Lemma 1 and Lemma 2 could be seen in (cf.[4]).0]
In a recent paper (cf. [1]) have introduced a p-k-generalization of the classical Mittag-Leffler

function .
£ 2) — p(’Y)n,k (Z)n .8
p k,a,ﬁ( ) nzg ka(om i B) n| ( )

where k,p € R* ,2,a,8,7 € C, Re(a) > 0,Re(8) > 0. As particular cases of ,E} , 5(z) we
have the classical two parameters Mittag- Leffler function E, g(z) for p = k = v = 1 and for
p = k one gets the k-Mittag- Leffler function £} , 5(2)

In the development of this paper we use fractional integrals and fractional derivatives, and
also Laplace transform, so we introduce the definitions and notations.

Definition 2. Let f be a sufficiently well-behaved function with support in Rt | and let v
be a real number, v > 0. The Riemann-Liouville fractional integral of order v, I f is given by

O K T (L9)

here I'(z) denotes the Gamma function of Euler
['(z) = / e 'ttt ,R(z) >0 (I.10)
0

2



@

It is known that the semigroup property is verified
= (I.11)

where by I? we denote the Identity operator.
The Riemann-Liouville fractional derivative of order v > 0, DY is defined as the left inverse
of the Riemann-Liouville integral of order v; i. e,

DI =1  v>0

Another way to defined this fractional derivative is as follows.
Definition 3. Let v > 0 be a real number, and let be m the integer sucht that m—1 < v <m
. Then the Riemann-Liouville fractional derivative of order v is given by

DY f(t) = D™I7f(1) (112)

Definition 4. Let £(f)(s) be the Laplace transform of an exponential order function and
piecewise continuous where

L] (s) = / ettt (113)

teR" ,and s € C.
Exist the relationship between the k-Wrigth function and the k-Mittag-Leffler function
obtained throung the Laplace transform (cf[14]). In fact, we have the following

S p(26) = B a7 (L14)

where k € RT o, 8,7 € C, R(a) > 0,R(5) > 0 ,R(v) >0 and R(s) >0

II Main Results

II.1 Definition and convergence

In view of the expressions (I.1),(1.3),(I.8) and (I.14) we introduce a new function of Wright type
that we will call the p-k-Wright function by means of the following

Definition 5. Let k,p € Rt ., 8,7 € C, Re(a) > 0,Re(8) > 0.The p-k-Wrigth function
1s defined as

<Z>n (IL.1)

W’Y
p k,aﬁ Z Fk om—l—ﬁ )

where ,I'x(2) is given by (1.3), and ,(V)nx is the Pochhammer symbol given by (1.4).

Easily we can prove that , W) ;(z) — W/ 5(z) as p — k , because ,(y)nt — (7)ns and
ka — I'k.

As particular cases of W (%) we have the classical two parameters Wright function
Wap(z) forp=k=~v=1

Theorem 1. The p-k-Wright function, defined in (11.1),is an entire function.
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Proof. Rewriting the series

o0

Wias(2) = Z F:&i " B ch (11.2)

then radius of convergence of the p-k-Wright function will be called R such that

R = lim sup (1L.3)

n—oo

Cn+1

Taking into account the proof of Theorem 1. that the p-k-Mittag-Leffler function is an entire
function,the definition of function (II.1) differs in that the factorials is squared ((n!)?), therefore
in an analogous way we can obtein apliying Lemma 1 and (1.5)

c e (T En+2+ 5| T(n+7)
n — 1 2 1 k k k k 11.4
o] A Y e CE -
~ (n+1)pr! <%n>% — 00 (IL.5)

Thus, the p-k-Wright function is an entire function. [J

I1.2 Elementary Properties of the p-k-Wright function

In this section we obtain several elementary properties of our p-k-Wright defined by (II.1) and
some others associated with the p-k-function Mittag-Leffler function obtained by means of the
Laplace Transform.

Lemma 3 Let k,p € Rt o, 8,7 € C, Re(a) > 0,Re(3) > 0. Then there holds the formula

d P (7 + K 2"
dz [ Weas(z 2] = ( k ) nz:% pLr(an +a+ B) (n+1)(n!)? (IL.6)

Proof Let o, 5,7 € C, Re(a) > 0,Re(3) > 0.From definition (I1.1), and Lemma 2 deduced
the well known relations for the p-k-Pochhammer symbol

p(Mnt1k = (%) p(V + K)ok

then

d ~ o d < p(V)n, (2)"
e GO Rl - Dy oy Yoy

0 n—1

p(’Y)n,k TLZ
— yLe(an + ) (n!)?

e}

o p('Y)n—&-l,k n <
- ; plr(a(n+1) + 5)( +) ((n+1)1)?

() (7 R 2" -
k /= Li(an+a+ ) (n+1)(n!)? ‘

n
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Theorem 2 Let k,p € Rt a,8,v € C, Re(a) > 0,Re(S) > 0. Then there holds the

formula

k d
W) = W) = () 22 W) 7)

Proof Let o, 5,7 € C', Re(a) > 0,Re(f) > 0.From definition (IL.1)

> k), pY)ngk (2)"
Wias(2) = Wias(s) = 3 g o a2+<5)7) : ((n!))2 (IL.8)

Taking into account that the Pochhammer p-k-symbol verified ,(v+k),, = [1 +n (f“—y)} (V)nk

it result

S+ R — oV = 1 (S) o (IL.9)

Replacing (I1.9) in (IL.8) we have

PWZZ,];?(Z>_pWIla,B(Z) = Z
n=0

_ (k). () i (7 + B 2"
Y k /= llan + a4+ B) (n+1)(n!)?
Then, by Lemma 3. it results

k d
PWIZZ%(Z> — o Wilap(2) = ( > S [ Wy, 52 z)] L.

Remark Furthermore, it can be proved that verified the following differential equation

k d
W = (2) 5 bWRase)] + W2 (1110)
Theorem 3 Let k,p € Rt «,8,v € C, Re(a) > 0,Re(S) > 0. Then there holds the
formula
wWo () = (“) 2L P 1111
Wias(z) = (?) T [» k,a,ﬁJrk(z)} + Ak hasik(?) (IL.11)

Proof. By definition (II.1) we have



ap\ d Bp
?) Z@ [PWI;):oc,B—&-k(Z)] + (f) PWIZ,a,ﬁ—&-k(Z) =
(Vn "

(
« - p\V)n.k z" B - p\V)n.k <
(?p) Zd% ; prk(anﬁ B4k () T <?p) Z Fk(ow(ji B+ k) ()

n

Z znz"! n io: (%) p(Vnk =
Fk (an + ﬁ + k) (n1)> &= pIilan+ B+ k) (n!)?

o (szﬁ)pp(fY)n,k m

— pli(an+ B+ k) (n!)?

zp

Taking into account ,I'(z + k) = ?pf(z)
0 (an+B)p n
apy d o, Br\ o S (s 2
(k:) gz e ()] + ( k) PWeasil?) gt an+5)p pLr(an + 8) (nl)?

n

d s o(V)n §
(2) 24t Wapaslel] + () Wpaale) = 3 20 2 (0

n=0 P

Then , we have

ap\ d Bp
pwaﬁa:(%Jzabﬂﬂw%@ﬂ+(g)ungmgau (IL.12)

In what follows shows the relationship between the p-k-Wrigth function and the p-k-Mittag-
Leffler function obtained throung the Laplace transform. In fact, we have the following

Theorem 1. Let k,p € RT .o, 3,7 € C, Re(a) > 0,Re(f) > 0 Re(y) > 0,Re(s) >0

I s ())(5) = B s ™) (I113)

where ,F] | () is the p-k-Mittag-LefHler function given by Cerutti; Luque and Dorrego. (cf.

[11)

Proof. From definition of Laplace Transform and from (II.1) we have

Zn
el WY —sz dy —
Wi slz / Z Fkoerﬁ nl2”
Z : /OO e 2"z (I1.14)
Fk om + ﬁ ) 0
Taking into account that the integral in (II.14) is
/0 e ¥ "dz = T (I1.15)
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From (II.14) and (II.15) we have

(e 9]

LW s(2s) =Y prkp((;ini E (sn)!” _

(s7h" 1 -1
— — E’Y
Z Pk om+ﬂ nl sP ras(5)
Then .
EWiap(2(s) = —pEl o (s™) (11.16)

III Fractional Integral and Fractional Derivative of the
E(t,p, k,a, ) function

In this subsection we will defined the function (¢, p, k, o, #) in term of the p-k- Wrigth function
and then we evaluate its Riemann-Liouville fractional integral and derivative.

Definition 6. Let «, 3,7 be complex numbers that R(a) > 0, R(8) > 0 and R(y) > 0
k> 0 and t € R. We define the auxiliary function E(t, p, k, o, ) by the following relation

E(t.p,k, o, B) = tE LW (%) (I11.1)

Easily we can prove that (¢, p, k, o, ) = E(t, k,, ) as p — k , where E(t, k, a, B) is the
function in term of the k- Wrigth function defined (c.f[14])

Proposition 1.Let «, 3,7 be complex numbers that ®(a) > 0, R(F) > 0 and R(y) > 0,
k>0 and t € R then

v v, Byu— 2
I—i—(g(tapakvaaﬁ))(x) =p 'Tk+ 1PWI;Y,a,B+ky($k) (IIIQ)

Proof. By definition (I1.9) and (III.1) we have

1 S p(,}/)n,k * omk+6_1 v el
['(v) nz:zo JTr(an + B)(n!)? /0 t (x — )" dt (II1.3)

making the change of variable
t=¢x, z—t=x(1-¢), dt=uzdf

and replacing in (I11.3) it result

oo

IV (E(,p, k. a, B))(x) =

1 p(fy)n,k 1 %_1‘% B u—1$1 B
F0) 2= Tafan + AP [ @ o=

IS (V)i 2 -1
P(v) = pllan + B)(n!)?

1 - g)rlae = (I11.4)
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The integral in (II1.4) result

/15“’?‘”(1 — ¢l =B (O‘" i) u)
. k

where B(z,w) is the Beta function. Then

1 (V)nk antB an+ f
]Vgta 7k77 - - 7 k+le( ) =
LEp ko, B))(2) T(v) ;pf‘k(an—i—ﬁ)(nmx L v
Z ank+ﬁ+V71F (an]:rﬁ) F(V) _
Fkan—l—ﬁ (n!)? F(%w—i—y)
ank+/3
v an+f
Z omk+ﬂ+yil k: F ( k ) F(V> _
T P
k F( k )

Appliying Lemma 1. , ,I'y(2) = %F(%)

) . k pF (OéTl—FB)F(V)
[+(8(t,p,k:,a,5))(x) xk+ 1p Z Fk Odn+6) ) kak(an+ﬂ+/€V)

Then,
v v, By &
I+((€(t,p,k,a,ﬁ>)($) =p kar llez,a,ﬁ-l—ky(xk)

Proposition 2.Let «, 5,7 be complex numbers that $(«) > 0, £(8) > 0 and R(y) > 0,
k>0 and t € R then
Di((ﬁ(t,p,k,&,ﬁ))(l’) :p*ka vt Wl;ya,B—&-k( )(‘T%) (IIIS)
Proof. The Riemann-Liouville fractional integral of order r — v of £(t, p, k, a, B) result

fi_y(g(t,p,k,a,ﬁ))( ) pT ka-H“ v Wl;ya6+k(r y)( %> (1116)

Now we evaluate the derivative of order r with respect to x of (II1.6)

T
d 7" V:L_kJrr v—1 nk r ok

pt Z Tt EeTE—

00 %_Hﬂ_y_l

Xz

d" r—V p(r)/)n k -
dar? HZ:O Lrlan+ 5 +k(r—v))  (n!)? B

i an on ants
pr—uzp(f}/)n,k( ;B+T—V—1)(T+’8—V_1)x Ij 1:
JTxlan + 5+ h{r —)) GIE

an k(r—v
o f: i <+B+() B 1) R 2
! = — an+B—kv -
n=0 p%()_qﬂ (%’M _ 1> (n!)2T (# —1)
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(e 9]

r—U ’Y ’Vl,k‘ x%x
Y »(7) _

o pp I (e ) (nl)?

—v By 1 C p(’)/)n,k Z k —
bt z;pf‘k(om—l—ﬁ—ku—k)(n!)Z_

an

=R

v —v, By
D-}-(g(t?pvkaaaﬁ))(x) =P Xk 1PW]ZQ,5+]¢(71/71)($ ) |:|
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