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Abstract 

In this paper we consider the problem of an infinitely long annular cylinder whose inner and outer surfaces are 

subjected to known surrounding temperatures and are traction free. The problem is in the context of the 

theory of thermoelasticity without energy dissipation. The Laplace transform with respect to time is used. The 

inversion process is carried out using a numerical method based on a Fourier series expansion. Numerical 

results are computed for the temperature, displacement and stress distributions. The numerical results are 

represented graphically. Comparison is made between the predictions here and those of the theory of 

thermoelasticity with one relaxation time. 
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Introduction 

The classical theory of thermoelasticity has been generalized and modified into various thermoelastic models 

that run under the label of “hyperbolic thermoelasticity”. The notation hyperbolic reflects the fact that thermal 

waves are modeled, avoiding the physical paradox of the infinite propagation speed of the classical model. At 

present, there are several theories of the hyperbolic thermoelasticity. The first was developed by Lord and 

Shulman [1] who obtained a wave-type heat equation by postulating a new law of heat conduction to replace 

the classical Fourier’s law. This new law contains the heat flux vector as well as its time derivative. It also 

contains a new constant that acts as a relaxation time. The second was developed by Green and Lindsay [2]. 

This theory contains two constants that act as relaxation times and modifies all the equations of the coupled 

theory, not the heat conduction equation only. Both of these theories ensure finite speeds of propagation for 

heat wave. . Among the contributions to this theory are the works in [3-8]. 

The theory of thermoelasticity without energy dissipation (GN theory) was proposed by Green and Naghdi [9]. 

The most important aspect of this theory, which is not present in other thermoelasticity theories, is that this 

theory does not accommodate dissipation of thermal energy. Among the contributions to this theory are the 

works in [10-15]. 

Formulation of the Problem 

Let (r, φ, z ) be cylindrical polar coordinates with the z-axis coinciding with the axis of an annular infinitely long 

elastic circular cylinder of a homogeneous, isotropic material of finite conductivity whose inner and outer radii 

are Ri, i = 1,2. The suffix 1 refers to the inner surface of the cylinder, while the suffix 2 refers to the outer 

surface. The surfaces of the cylinder are taken to be traction-free and are in contact with media of known 

temperatures. 

Due to the physics of the problem, all the functions considered will depend on r and t only.  The displacement 

components have the form 

 u = (u(r, t), 0, 0). 

The basic equations due to Green and Nagdhi [9] in the absence of body forces and heat sources for isotropic 

elastic medium are given by: 

Equation of motion has the form 

 uTgradudivgradu   )(2
 (1) 

The generalized equation of heat conduction are given by 
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The constitutive equation: 
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where λ and μ are Lamé’s modulii, T is the absolute temperature of the medium, and γ is a material constant 

given by γ = (3λ + 2μ)αt where αt is the coefficient of linear thermal expansion, CE is the specific heat at 

constant strain, ρ is the density and T0 is a reference temperature assumed to be such that │( T-T0 ) / T0 │<<1. 

k
*
 is a material constant, characteristic of the theory. 
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Let us introduce the following non-dimension variables 
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The governing equations (1)-(3) in non-dimensional form become (dropping the asterisks for convenience) 
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Introducing the thermoelastic potential function Ψ, defined by 
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Equations (4)-(6) given by 
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Solution of the problem in the Laplace transform domain    

 Applying the Laplace transform with parameter s defined by the relation  
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 to both sides of equations (4)-(6), we obtain 

     22 s  (10) 

  22222  ssCt  (11) 



 

195 

 





 22

2

2
2 1

)2( 










rrr
rr  (12) 

Eliminating   from equations (10) and (11), we get 
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Equation (13) can be factorized as 
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Since the operators in (14) are permutable it follows from the theory of linear differential equations that ψ is 

the linear combination of the two solutions of 
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where Ai and  Bi, i = 1, 2 are parameters depending on s to be determined from the boundary conditions and  

I0, K0 are the modified Bessel functions of the first and second kinds respectively. 

Substituting from (15) into (l0), we get 
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the displacement u  is given by 
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the stress tensor are obtained from equations (12), (15) and (16), they have the form 
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The boundary conditions of the problem can be written as: 
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where H(t) is the Heaviside unit step function. Taking the Laplace transform of both sides of the preceding 

equations, we obtain 
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Using the boundary conditions (19), we get the following linear system of equations in the 4 parameters Ai 

and Bi, i =1, 2 
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Numerical inversion of the Laplace transforms 

We shall now outline the method used to invert the Laplace transforms in the above equations. Let )s,r(f  be 

the Laplace transform of a function f(r, t). The inversion formula for Laplace transforms can be written as [16] 

 ds s)(fe
i2

1
 = t)f(  t s

 i + d      

 i - d

r,r, 





 , 

where d is an arbitrary real number greater than all the real parts of the singularities of )s(f r, . Taking s = d + i y, 
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Expanding the function h(r, t) = exp(-dt) f(r, t) in a Fourier series in the interval [0,2L], we obtain the approximate 

formula [17] 

 f(r ,t) = f( r, t) + ED , 

where 
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The discretization error, ED, can be made arbitrarily small by choosing d large enough [17]. 

As the infinite series in (24) can only be summed up to a finite number N of terms, the approximate value of f(r, t) 

becomes 
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Using the above formula to evaluate f(r,t), we introduce a truncation error ET that must be added to the 

discrimination error to produce the total approximation error. 

Two methods are used to reduce the total error. First, the `Korrecktur` method is used to reduce the discrimination 

error. Next, the ε-algorithm is used to reduce the truncation error and therefore to accelerate convergence. 

The Korrecktur-method uses the following formula to evaluate the function f(r, t) 

 f(r, t) = f( r, t) - e
-2dL

 f( r, 2L+t) + E`D , 

where the discrimination error DD EE  [17]. 

Thus, the approximate value of f(r, t) becomes 

 fNK(r, t) = fN(r, t) - e
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 fN`( r, 2L+t) . (27) 

N` is an integer such that N` < N. 

We shall now describe the ε-algorithm that is used to accelerate the convergence of the series in (24). Let N be an 

odd natural number and let 
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It can be shown that [17] the sequence 
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 1,1  3,1  N,1,… 

Converges to f(r, t) + ED - c0 /2 faster than the sequence of partial sums 

 sm     ,    m =1,2,3, ...  . 

The actual procedure used to invert the Laplace Transforms consists of using equation (27) together with the 

ε-algorithm. The values of d and L are chosen according the criteria outlined in [17]. 

Numerical results 

For fixed values of r and t, the linear system (20)-(23) is solved numerically for the unknowns Ai, Bi, i = 1, 2, and the 

results are substituted into (16), (17) and (18) to obtain the value of θ, u and σrr. The functions are evaluated for 

value of time namely t = 0.1 at points inside the cylindrical annuals. These results are shown in Figs l-3 these 

figures include also the graphs of the corresponding functions for the theory of thermoelasticity without energy 

dissipation (GN theory). For numerical computations we have used the copper material with 

ε = 0.0168, β
2
 = 3.342, RI = 1, R2 = 2, Ct

2
 = 40 

LS theory is represented by dotted lines while GN theory is represented by solid lines. 
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Concluding remarks 

In this work, we have discussed the model of thermoelastic problem for an infinitely long annular cylinder 

without energy dissipation (GN theory) the context of Green and Naghdi theory without energy dissipation. 

The problem is solved by means of the Laplace transform and Laplace inversion. We concluded that:  

GN theory 

LS theory 
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It is clear from the above figures that results for generalized thermoelasticity (LN theory) are distinctly different 

from those of theory of thermoelasticity without energy dissipation (GN theory) for small values of time. the 

temperature and stress distributions have two finite jumps while the displacement is continuous everywhere 

having a discontinuous first derivative. The first discontinuity does not show in figures 1 because it is very 

small. 

The difference between the predictions of the theories of LS and GN is most apparent in the graph of the 

temperature distribution. In the LS theory the temperature decreases monotonically signifying continuous 

dissipation of heat energy. This is not the case for GN theory. 

The mechanical distributions indicate that the wave propagates as a wave with finite velocity in medium in two 

cases. It is completely different from the case for the classical theory of thermoelasticity where an infinite 

speed of propagation is inherent and hence all the considered functions have a non-zero value for any point 

in the medium. 

The fact that in thermoelasticity without energy dissipation, the waves propagate with finite speeds is evident 

in all these figures. 
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