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Abstract

In this paper, we prove weak and strong convergence of implicit and explicit iterative algorithms for approximation of
common fixed point of finite family of total asymptotically nonexpansive mappings. Our recursion formulas seem more
efficient than those recently announced by several authors for the same problem. Our theorems improve, generalize
and extend several recently announced results.
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1 Introduction

Let K be a nonempty subset of a real normed space E. A mapping T : K → K is said to be nonexpansive if
‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ K. The mapping T is called asymptotically nonexpansive if there exists a sequence
{µn}n≥1 ⊂ [0,∞) with lim

n→∞
µn = 0 such that for all x, y ∈ K,

‖Tnx− Tny‖ ≤ (1 + µn)‖x− y‖ ∀ n ≥ 1.

The operator T is called uniformly L−Lipschitzian if there exists a constant L ≥ 0 such that for all x, y ∈ K,

‖Tnx− Tny‖ ≤ L‖x− y‖ ∀ n ≥ 1.

It is easy to see that every asymptotically nonexpansive mapping is uniformly L−Lipschitzian.

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [19] as a generalization of
the class of nonexpansive mappings. They proved that if K is a bounded closed convex nonempty subset of a uni-
formly convex real Banach space and T is an asymptotically nonexpansive self-mapping of K, then T has a fixed point.

A mapping T : K → K is said to be total asymptotically nonexpansive (see e.g. [2, 3, 12, 21]) if there exist nonnegative
real sequences {µn} and {ln}, n ≥ 1 with µn → 0, ln → 0 as n → ∞ and nondecreasing continuous function
φ : R+ → R+ with φ(0) = 0 such that for all x, y ∈ K,

‖Tnx− Tny‖ ≤ ‖x− y‖+ µnφ(‖x− y‖) + ln, n ≥ 1. (1)

Remark 1 If φ(t) = 0 ∀ t ∈ [0,+∞), then (1) reduces to

‖Tnx− Tny‖ ≤ ‖x− y‖+ ln, n ≥ 1,
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so that if K is bounded and TN is continuous for some integer N ≥ 1, then the mapping T is of asymptotically
nonexpansive type. (the class of mappings which are of asymptotically nonexpansive type includes the class of mappings
which are asymptotically nonexpansive in the intermediate sense and the class of nearly asymptotically nonexpansive
mappings which had been studied by several authors, see e.g. [11, 12, 32]). If φ(t) = t, then (1) becomes

‖Tnx− Tny‖ ≤ (1 + µn)‖x− y‖+ ln, n ≥ 1.

In addition, if ln = 0 for all n ≥ 1, then total asymptotically nonexpansive mappings coincide with asymptotically
nonexpansive mappings. If µn = 0 and ln = 0 for all n ≥ 1, we obtain from (1) the class of mappings that includes
the class of nonexpansive mappings.

Alber et al. [2] introduced the class of total asymptotically nonexpansive mappings as a more general class of asymp-
totically nonexpansive mappings. The idea behind the introduction of the class of total asymptotically nonexpansive
mappings is to unify various definitions of classes of mappings associated with the class of asymptotically nonexpansive
mappings and to prove a general convergence theorems applicable to all these classes of nonlinear mappings.

At this juncture, we shall pause and provide an example to show that class of total asymptotically nonexpansive
mappings properly contains the class of asymptotically nonexpansive mappings.

Example 2 (See Ofoedu and Madu [29]) Let E = R × `1 be endowed with the norm ‖.‖E = |.| + ‖.‖`1 . Let K be
a subset of E defined by K := [0, 1] × B, where B is the closed unit ball of `1. For all u ∈ [0, 1] and x ∈ B define
T : K → K by

T (u, x) =


(

1
3 , (0,

|x1|2
3 , x2

3 ,
x3

3 ,
x4

3 , . . .)
)
, if u ∈

[
0, 13

](
0, (0, |x1|2

3 , x2

3 ,
x3

3 ,
x4

3 , . . .)
)
, if u ∈

(
1
3 , 1
]
.

(2)

We can easily check that T given by (2) is not continuous and thus cannot be asymptotically nonexpansive (since
every asymptotically nonexpansive mapping is uniformly L-Lipschitzian, so Lipschitz and every Lipschitz mapping is
continuous). Next, let {ln}n≥1 be a sequence of real numbers such that l1 = 1

3 and lim
n→∞

ln = 0. Observe that for all

(u, x), (v, y) ∈ K, ∥∥∥T (u, x)− T (v, y)
∥∥∥
E
≤ |u− v|+ l1 +

1

3
max

{
|x1|+ |y1|, 1

}
‖x− y‖`1 .

Moreover, we can equally check easily that for all n ≥ 2 and for all (u, x), (u, y) ∈ K,

Tn(u, x) =
(1

3
, (0, 0, . . . , 0, 0︸ ︷︷ ︸

n−times

,
|x1|2

3n
,
x2
3n
,
x3
3n
,
x4
3n
, . . .)

)
and ∥∥∥Tn(u, x)− Tn(v, y)

∥∥∥
E
≤ 1

3n
max

{
|x1|+ |y1|, 1

}
‖x− y‖`1 .

So, for all n ≥ 1, ∥∥∥Tn(u, x)− Tn(v, y)
∥∥∥
E
≤ |u− v|+ ‖x− y‖`1

+
2

3n

[
|u− v|+ ‖x− y‖`1

]
+ ln. (3)

Thus, with φ : [0,+∞) → [0,+∞) defined by φ(t) = 2t, µn = 1
3n for all n ≥ 1 and {ln}n≥1 any null sequence with

l1 = 1
3 , we obtain from (3) that∥∥∥Tn(u, x)− Tn(v, y)

∥∥∥
E
≤
∥∥∥(u, x)− (v, y)

∥∥∥
E

+ µnφ
(∥∥∥(u, x)− (v, y)

∥∥∥
E

)
+ ln.

So, the mapping T given by (2) is total asymptotically nonexpansive but not asymptotically nonexpansive.
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Considerable research efforts have been devoted to developing iterative methods for approximation of common fixed
points (when they exist) of finite families of nonlinear mappings. ( see e.g., [4, 8, 11, 15, 27, 22, 23, 35, 39, 40, 44]).

Zhou and Chang [45] introduced the following implicit iteration process for approximation of common fixed point of
finite family of asymptotically nonexpansive mappings:

x0 ∈ K,xn = αnxn−1 + βnT
n
n(modN)xn + γnun ∀ n ≥ 1. (4)

In fact, Zhou and Chang [45] proved the following theorem:

Theorem ZC. Let E be a real uniformly convex Banach space satisfying Opial’s condition, K be a nonempty
closed convex subset of E, T1, T2, ..., TN : K → K be N asymptotically nonexpansive mappings with sequences

{k(i)n }n≥1, i = 1, 2, .., N in [1,+∞) such that lim
n→∞

kn = 1 and F :=

N⋂
n=1

F (Ti) 6= ∅. Let un be a bounded sequence in

K, {αn}, {βn}, {γn} be three sequences in [0, 1] and kn = max{k(1)n , k
(2)
n , ..., k

(N)
n } such that

(i) αn + βn + γn = 1, ∀ n ≥ 1; (ii)

∞∑
n=1

(kn − 1) < +∞;

(iii) there exist constants τ1, τ2 ∈ (0, 1
σ ) such that τ1 ≤ βn ≤ τ2, ∀ n ≥ 1, where σ = sup

n≥1
kn ≥ 1; (iv)

∞∑
n=1

γn < +∞; (v)

there exists a constant L > 0 such that for any i, j ∈ {1, 2, ..., N}, i 6= j, ‖Tni x−Tnj y‖ ≤ L‖x−y‖, ∀ n ≥ 1, ∀ x, y ∈ K.
Then, the implicit iterative sequence {xn} defined by (4) converges weakly to a common fixed point of {T1, T2, ..., TN}.

Recently, Y. Hao [21] proved the following theorem:

Theorem H. Let H be a real Hilbert space and K be a nonempty closed convex and bounded subset of H such
that K + K ⊂ K. Let Ti : K → K be a uniformly Li-Lipschitz total asymptotically nonexpansive mapping with the

function ψi and sequences {µ(i)
n }, {`(i)n } for each i ∈ {1, 2, ..., N}. Assume that

∞∑
n=1

µ(i)
n <∞ and

∞∑
n=1

`(i)n <∞ for each

i ∈ {1, 2, ..., N}. Let {un}n≥1 be a bounded sequence in K such that

∞∑
n=1

‖un‖ <∞ and {αn} a sequence in
[
1−L
L , a

]
,

where L = max
1≤i≤N

{Li} > 1 and a is some constant in (0, 1). Assume that F :=

N⋂
n=1

F (Ti) 6= ∅. Let {xn} be a sequence

generated by

xn = αnxn−1 + (1− αn)T
k(n)
i(n) xn + un, ∀ n ≥ 1, (5)

then the sequence {xn} converges weakly to some point x∗ ∈ F.

Remark 3 We observe that Theorem ZC holds for finite family of asymptotically nonexpansive mappings and that
condition (v) in the Theorem ZC is strong. In Theorem H, the further assumption that the sequence {un} in K is

bounded is superflous since it is already assumed that K is bounded. Besides, the conditions K +K ⊂ K,

∞∑
n=1

‖un‖ <

∞ and the boundedness condition on K are rather too strong. The one that is most worrisome is the condition
∞∑
n=1

‖un‖ < ∞, where {un}n≥1 is sequence of error terms. It has been severally objected (see e.g. [28]) that the

condition
∑
‖un‖ < ∞ (as imposed by Hao) is not compatible with the randomness of the occurence of errors (since

it implies in particular, that the sequence of errors tend to zero as n tends to infinity). This is almost impossible to
verify in application.

It is our purpose in this paper to prove weak and strong convergence of implicit and explicit iteration processes for
approximation of common fixed point of finite family of total asymptotically nonexpansive mappings. Our altimate aim
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is to take care of the anomalies pointed out in Remark 3. Our theorems unify, extend and generalize the corresponding
results of Alber et. al. [2], Hao [21], Sahu [32], Shahzad and Udomene [33], Zhou and Chang [45] and a host of other
results recently announced for the approximation of common fixed points of finite families of several classes of nonlinear
mappings. Our method of proof is of independent interest.

2 Preliminary

Let E be a real normed linear space with dual E∗. We denote by Jq the generalized duality mapping from E to 2E
∗

defined by
Jqx := {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖q, ‖f∗‖ = ‖x‖q−1},

where 〈., .〉 denotes the generalized duality pairing between members of E and members of E∗. For q = 2, the mapping
J = J2 from E to 2E

∗
is called the normalized duality mapping. It is well known that if E is uniformly smooth or

E∗ is strictly convex, then duality mapping is single-valued. If E = H is a Hilbert space then the duality mapping
becomes the identity map of H.

Let E be a real normed space. The modulus of convexity of E is the function δE : [0, 2]→ [0, 1] defined by

δE(ε) = inf{1− ‖x+ y‖
2

: ‖x‖ = ‖y‖ = 1, ε = ‖x− y‖}. (6)

The space E is uniformly convex if and only if δE(ε) > 0 ∀ ε ∈ (0, 2]. It is well known (see e.g., [1]) that in a uniformly

convex space, δE is continuous, strictly increasing, and δE(0) = 0; and that δE(ε)
ε is non-decreasing for all ε ∈ (0, 2].

Let K be a closed convex nonempty subset of a Banach space E. A mapping T : K → E is said to be demiclosed at x0
if and only if whenever a sequence {xn}n≥1 in K converges weakly to x∗ ∈ K and the sequence {Txn}n≥1 converges
strongly to x0 ∈ E we have that Tx∗ = x0. The operator T is said to be completely continuous if and only if for any
bounded sequence {yn}n≥1 in K, the sequence {Tyn}n≥1 has a subsequence (say {Tynk

}k≥1) which converges strongly
to some y∗ ∈ E.

In the sequel, we shall need the following Lemmas:

Lemma 4 (see e.g., [1]). Let E be a uniformly convex real Banach space, λ ∈ [0, 1], x, y ∈ E. Then

‖λx+ (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − 2λ(1− λ)C2δE

(‖x− y‖
2C

)
, (7)

where C =
√
‖x‖2+‖y‖2

2 .

Remark 5 (see [1]) If ‖x‖ ≤ R and ‖y‖ ≤ R, where R is some positive number, then C ≤ R and 2C2δE

(
‖x−y‖
2C

)
≥

R2δE

(
‖x−y‖

2R

)
2L∗ , where L∗ is a constant (the Figiel constant, see e.g., [18]) such that 1 < L∗ < 1.7.

Lemma 6 Let {an}, {βn} and {γn} be sequences of nonnegative real numbers such that

λn+1 ≤ (1 + βn)λn + γn.

Suppose that

∞∑
n=1

βn <∞ and

∞∑
n=1

γn <∞. Then {λn} is bounded and lim
n→∞

λn exists.

Lemma 7 (see Corollary 2.6 of [3]) Let E be a reflexive Banach space with weakly sequentially continuous normalized
duality mapping J . Let K be a closed convex subset of E and T : K → K a uniformly continuous total asymptotically
nonexpansive mapping with bounded orbits. Then I − T is demiclosed at zero.
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3 Main results

Let K be a nonempty closed convex subset of a real normed space E. Let T1, T2, ..., Tm : K → K be m total
asymptotically nonexpansive mappings and {αn}n≥1 ⊂ (0, 1). We define the implicit iteration process {xn} by
x0 ∈ K,

x1 = α1x0 + (1− α1)T1x1
x2 = α2x1 + (1− α2)T2x2
...
xm = αmxm−1 + (1− αm)Tmxm
xm+1 = αm+1xm + (1− αm+1)T 2

1 xm+1

...
x2m = α2mx2m−1 + (1− α2m)T 2

mx2m
x2m+1 = α2m+1x2m + (1− α2m+1)T 3

1 x2m+1

...

(8)

Since for all z ∈ Z (where Z is the set of integers), there exists j(z) ∈ {1, 2, ...,m} such that z − j(z) is divisible by m
(that is j(z) = z mod m), then there exists q(z) ∈ Z with lim

z→+∞
q(z) = +∞ such that

z =
(
q(z)− 1

)
m+ j(z). (9)

Thus, we may write (8) in a more compact form as

xn = αnxn−1 + (1− αn)T
q(n)
j(n) xn, ∀ n ≥ 1. (10)

By similar procedure as in (8), the following explicit iteration process is generated:

z1 ∈ K, zn+1 = αnzn + (1− αn)T
q(n)
j(n) zn, ∀ n ≥ 1. (11)

Remark 8 Since n−m ∈ Z for all n ∈ N (where N denotes the set of positive integers), we obtain from (9) (for the
particular case n−m ∈ Z) that

n−m =
(
q(n−m)− 1

)
m+ j(n−m). (12)

Also substituting n ∈ N for z in (9) and subtracting m from both sides of the resulting equation gives

n−m =
((
q(n)− 1

)
− 1
)
m+ j(n). (13)

Comparing (12) and (13) we obtain (by unique representation theorem) that

q(n−m) = q(n)− 1 and j(n−m) = j(n) ∀ n ∈ N. (14)

We shall now proceed to prove weak and strong convergence of the schemes (10) and (11) in real Banach spaces. We
start as follows.

Proposition 9 Let K be a nonempty subset of a real normed space E and T1, T2, ..., Tm : K → K be m total
asymptotically nonexpansive mappings, then there exist sequences {µn}, {`n} ⊂ [0,+∞) with lim

n→∞
µn = 0 = lim

n→∞
`n

and a nondecreasing continuous function φ : [0,+∞)→ [0,+∞), with φ(0) = 0 such that for all x, y ∈ K,

‖Tni x− Tni y‖ ≤ ‖x− y‖+ µnφ(‖x− y‖) + `n ∀ n ≥ 1, i = 1, 2, ...,m.
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Proof. Let I := {1, 2, ...,m}. Since T1, T2, ..., Tm : K → K are m total asymptotically nonexpansive mappings, then
there exist sequences {µin}, {`in} ⊂ [0,+∞) with lim

n→∞
µin = 0 = lim

n→∞
`in and nondecreasing continuous function

φi : [0,+∞)→ [0,+∞), with φi(0) = 0 such that for all x, y ∈ K,

‖Tni x− Tni y‖ ≤ ‖x− y‖+ µinφi(‖x− y‖) + `in ∀ n ≥ 1, ∀ i ∈ I.

Setting µn := max
i∈I
{µin}, `n := max

i∈I
{`in} and defining φ : [0,+∞) → [0,+∞) by φ(t) = max

i∈I
{φi(t)}, ∀ t ∈ [0,+∞),

then φ is nondecreasing continuous with φ(0) = 0; the sequences {µn}, {`n} belong to [0,+∞) and are such that
lim
n→∞

µn = 0 = lim
n→∞

`n and for all x, y ∈ K,

‖Tni x− Tni y‖ ≤ ‖x− y‖+ µnφ(‖x− y‖) + `n ∀ n ≥ 1, i ∈ I.

This completes the proof. 2

Remark 10 In what follows, µn := max
i∈I
{µin}, `n := max

i∈I
{`in} and φ(t) = max

i∈I
{φi(t)}, ∀ t ∈ [0,+∞). We shall

assume that

∞∑
n=1

µn < +∞ and

∞∑
n=1

`n < +∞⇔
∞∑
n=1

`in < +∞, ∀ i ∈ I and that there exists constants M0 > 0,M1 > 0

such that φ(t) ≤M0t for all t > M1. We shall also assume that the real sequence {αn}n≥1 is such that η1 ≤ 1− αn ≤
η2 ∀ n ∈ N and for some η1, η2 ∈

(
0, 1ξ

)
, where ξ := sup

n≥1
(1 +M0µn) ≥ 1.

3.1 Convergence of implicit iteration scheme.

We now state and prove the following Theorem.

Theorem 11 Let E be a real normed space, K be a nonempty closed convex subset of E and Ti : K → K, i = 1, 2, ...,m

be m total asymptotically nonexpansive mappings such that F :=

m⋂
i=1

F (Ti) 6= ∅. Let {xn} be given by (10), then {xn}

is bounded and for all p ∈ F, lim
n→∞

‖xn − p‖ exists.

Proof. Let p ∈ F. Then we obtain using (10) that

‖xn − p‖ =
∥∥∥αn(xn−1 − p) + (1− αn)(T

q(n)
j(n) xn − p)

∥∥∥
≤ αn‖xn−1 − p‖+ (1− αn)

∥∥∥T q(n)j(n) xn − p
∥∥∥

≤ αn‖xn−1 − p‖+ (1− αn)
[
‖xn − p‖+ µq(n)φ

(
‖xn − p‖

)
+ `q(n)

]
. (15)

Since φ is a continuous function, it follows that φ attains a maximum (say M) in the interval [0,M1] and (by our
assumption, see Remark 10) φ(t) ≤M0t whenever t > M1. In either case, we have

φ(t) ≤M +M0t ∀ t ∈ [0,+∞). (16)

Thus, using (15) and (16), we get

‖xn − p‖ ≤ αn‖xn−1 − p‖+ (1− αn)
[
‖xn − p‖+ µq(n)

(
M +M0‖xn − p‖

)
+ `q(n)

]
,

so that (
1− (1− αn)(1 + µq(n)M0)

)
‖xn − p‖ ≤ αn‖xn−1 − p‖+ η2

[
µq(n)M + `q(n)

]
. (17)

46

http://purkh.com/index.php/mathlab


MathLAB Journal Vol 4 (2019) ISSN: 2582-0389 http://purkh.com/index.php/mathlab

But 0 < (1 − αn)(1 + µq(n)M0) ≤ η2ξ < 1 ∀ n ∈ N. So, 1 − (1 − αn)(1 + µq(n)M0) ≥ 1 − η2ξ > 0 ∀ n ∈ N. We thus
obtain from (17) that

‖xn − p‖ ≤
αn

1− (1− αn)(1 + µq(n)M0)
‖xn−1 − p‖+

η2
1− η2ξ

[
µq(n)M + `q(n)

]
=

1(
1− (1−αn)µq(n)M0

αn

)‖xn − p‖+
η2

1− η2ξ

[
µq(n)M + `q(n)

]
. (18)

Observe that

0 <
(1− αn)µq(n)M0

αn
<
ξ−1(ξ − 1)

1− ξ−1
= 1 (19)

and that

0 <
(1− αn)µq(n)M0

αn
≤
η2µq(n)M0

1− η2
(20)

So, defining ωn =
(1−αn)µq(n)M0

αn
, we obtain from (19) that 0 < ωn < 1 and from (20) that

∞∑
n=1

ωn < +∞, which implies

that lim
n→∞

ωn = 0. Thus, there exists n0 ∈ N such that for all n ≥ n0,

1− ωn > k0 ⇔
1

1− ωn
<

1

k0
for some k0 ∈ (0, 1).

Therefore, for all n ≥ n0,

1

1− ωn
=

∞∑
p=0

ωpn = 1 + ωn + ω2
n

∞∑
p=0

ωpn

≤ 1 + ωn

(
1 +

1

1− ωn

)
< 1 + ωn(1 +

1

k0
) = 1 +

[k0 + 1

k0

]
ωn. (21)

Using (21), we obtain from (18) that

‖xn − p‖ ≤
1

1− ωn
‖xn−1 − p‖+

η2
1− η2ξ

[
µq(n)M + `q(n)

]
≤

(
1 +

[k0 + 1

k0

]
ωn

)
‖xn−1 − p‖+

η2
1− η2ξ

[
µq(n)M + `q(n)

]
. (22)

Now, if we define

λn := ‖xn − p‖, βn :=
[k0 + 1

k0

]
ωn and γn :=

1

1− η2ξ

[
µq(n)M + `q(n)

]
,

then (22) becomes

λn ≤ (1 + βn)λn−1 + γn. (23)

It is easy to see that

∞∑
n=1

βn < +∞ and

∞∑
n=1

γn < +∞. So, using (23), we obtain from Lemma 6 that the sequence

{xn} is bounded and that lim
n→∞

‖xn − p‖ exists. This completes the proof. 2

Theorem 12 Let E be a uniformly convex real Banach space, K be a nonempty closed convex subset of E and
Ti : K → K, i = 1, 2, ...,m be m uniformly continuous total asymptotically nonexpansive mappings such that F :=
m⋂
i=1

F (Ti) 6= ∅. Let {xn} be the sequence defined by (10), then lim
n→∞

‖xn − Tixn‖ = 0, i = 1, 2, ...,m.
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Proof. We first show that lim
n→∞

‖xn−T q(n)j(n) xn‖ = 0, i = 1, 2, ...,m. Let p ∈ F ; and observe that from recursion formula

(10), Lemma 4 and Remark 5, the following inequality holds:

‖xn − p‖2 =
∥∥∥αn(xn−1 − p) + (1− αn)

(
T
q(n)
j(n) xn − p

)∥∥∥2
≤ αn‖xn−1 − p‖2 + (1− αn)

∥∥∥T q(n)j(n) xn − p
∥∥∥2

−2αn(1− αn)C2δE

(‖xn−1 − T q(n)j(n) xn‖
2C

)
≤ αn‖xn−1 − p‖2 + (1− αn)

[
‖xn − p‖+ µj(n)φ(‖xn − p‖) + `j(n)

]2
−2η1(1− η2)

R2
0δE(‖xn−1 − T q(n)j(n) xn‖/2R0)

2L∗

≤ αn‖xn−1 − p‖2 + (1− αn)‖xn − p‖2 +Q0(µj(n) + `j(n))

−2η1(1− η2)
R2

0δE(‖xn−1 − T q(n)j(n) xn‖/2R0)

2L∗
,

for some Q0 > 0, R0 > 0. This implies that

R2
0δE(‖xn−1 − T q(n)j(n) xn‖/2R0)

2L∗
≤ 1

2η1(1− η2)

[
αn‖xn−1 − p‖2 + (1− αn)‖xn − p‖2

−‖xn − p‖2 +Q0(µj(n) + `j(n))
]

=
1

2η1(1− η2)

[
αn
(
‖xn−1 − p‖2 − ‖xn − p‖2

)
+Q0

(
µj(n) + `j(n)

)]
≤ 1

2η1(1− η2)

[
(1− η1)

(
‖xn−1 − p‖2 − ‖xn − p‖2

)
(24)

+Q0

(
µj(n) + `j(n)

)]
Since by Theorem 11, lim

n→∞
‖xn − p‖ exists, we obtain from (24) that

lim
n→∞

R2
0δE(‖xn−1 − T q(n)j(n) xn‖/2R0)

2L∗
= 0 (25)

Thus, by continuity of δE and the fact that δE(0) = 0 , (25) gives

lim
n→∞

∥∥∥xn−1 − T q(n)j(n) xn

∥∥∥ = 0. (26)

Next, from (10),

‖xn − xn−1‖ = (1− αn)
∥∥∥xn−1 − T q(n)j(n) xn

∥∥∥.
Thus,

lim
n→∞

‖xn − xn−1‖ = 0. (27)

Furthermore, ∥∥∥T q(n)j(n) xn − xn
∥∥∥ ≤ ∥∥∥T q(n)j(n) xn − xn−1

∥∥∥+ ‖xn−1 − xn‖. (28)

So, we obtain from (26), (27) and (28) that

lim
n→∞

∥∥∥T q(n)j(n) xn − xn
∥∥∥ = 0. (29)

48

http://purkh.com/index.php/mathlab


MathLAB Journal Vol 4 (2019) ISSN: 2582-0389 http://purkh.com/index.php/mathlab

It is easy to see using (27) that

lim
n→∞

‖xn − xn−i‖ = 0 = lim
n→∞

‖xn − xn+i‖, i = 1, 2, ...,m. (30)

By uniform continuity of Ti, i = 1, 2, ...,m, there exists a continuous increasing function π : R → R with π(0) = 0
such that ∥∥∥xn−1 − Tj(n)xn∥∥∥ ≤

∥∥∥xn−1 − T q(n)j(n) xn

∥∥∥+
∥∥∥T q(n)j(n) xn − Tj(n)xn

∥∥∥
≤

∥∥∥xn−1 − T q(n)j(n) xn

∥∥∥+ π
(∥∥∥T q(n)−1j(n) xn − xn

∥∥∥). (31)

Observe that from the second summand on the right hand side (second line) of (31), we get∥∥∥T q(n)−1j(n) xn − xn
∥∥∥ ≤

∥∥∥T q(n)−1j(n) xn − T q(n)−1j(n−m)xn−m

∥∥∥
+
∥∥∥T q(n)−1j(n−m)xn−m − xn−m

∥∥∥+ ‖xn−m − xn‖. (32)

But, by (14),
q(n−m) = q(n)− 1 and j(n−m) = j(n).

Considering the first two summands on the right hand side of (32), it therefore follows that the first summand∥∥∥T q(n)−1j(n) xn − T q(n)−1j(n−m)xn−m

∥∥∥ =
∥∥∥T q(n)−1j(n) xn − T q(n)−1j(n) xn−m

∥∥∥
≤ ‖xn − xn−m‖+ µq(n)−1φ(‖xn − xn−m‖)

+`q(n)−1. (33)

Thus, (33) implies that

lim
n→∞

∥∥∥T q(n)−1j(n) xn − T q(n)−1j(n−m)xn−m

∥∥∥ = 0. (34)

Moreover, the second summand∥∥∥T q(n)−1j(n−m)xn−m − xn−m
∥∥∥ =

∥∥∥T q(n−m)
j(n−m) xn−m − xn−m

∥∥∥→ 0 as n→ +∞ (35)

So, using (34) and (35) in (32), we obtain that

lim
n→∞

‖T q(n)−1j(n) xn − xn‖ = 0.

As a result, we obtain from (31) (using the property of π) that

lim
n→∞

‖xn−1 − Tj(n)xn‖ = 0. (36)

Furthermore,

‖xn − Tj(n)xn‖ ≤ ‖xn − xn−1‖+ ‖xn−1 − Tj(n)xn‖. (37)

Thus, using (27) and (36), we obtain from (37) that

lim
n→∞

‖xn − Tj(n)xn‖ = 0. (38)

Again, using the fact that Ti, i = 1, 2, ...,m are uniformly continuous, we have that there exists continuous increasing
functions πi : R → R with πi(0) = 0, i = 1, 2, ...,m such that ‖Tix − Tiy‖ ≤ πi(‖x − y‖) ∀ x, y ∈ K, i = 1, 2, ...,m.
Thus, defining π0 : R → R by π0(t) = max

i∈I
πi(t) (where I = {1, 2, ...,m}), we have that π0 is continuous increasing

function, π0(0) = 0 and

‖xn − Tj(n)+ixn‖ ≤ ‖xn − xn+i‖+ ‖xn+i − Tj(n)+ixn+i‖
+‖Tj(n)+ixn+i − Tj(n)+ixn‖

≤ ‖xn − xn+i‖+ ‖xn+i − Tj(n)+ixn+i‖
+π0(‖xn+i − xn‖). (39)
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So, using (30), (38) and (39), we have that

lim
n→∞

‖xn − Tj(n)+ixn‖ = 0, i = 1, 2, ...,m. (40)

But for all i ∈ {1, 2, ...,m}, there exists θi ∈ {1, 2, ...,m} such that

j(n) + θi = i (mod m).

It therefore follows from (40) that

lim
n→∞

‖xn − Tixn‖ = lim
n→∞

‖xn − Tj(n)+θixn‖ = 0.

Hence, lim
n→∞

‖xn − Tixn‖ = 0 for all i ∈ {1, 2, ...,m}. This completes the proof. 2

3.2 Weak convergence of implicit iteration process.

Theorem 13 Let K be a closed convex nonempty subset of a uniformly convex real Banach space with weakly con-
tinuous normalized duality mapping. Let T1, T2, ..., Tm : K → K be m uniformly continuous total asymptotically

nonexpansive mappings such that F :=

m⋂
i=1

F (Ti) 6= ∅. Let {xn}n≥1 be the sequence defined by (10), then {xn}n≥1

converges weakly to a common fixed point of T1, T2, ..., Tm.

Proof. Since E is a reflexive Bananch space and by Theorem 11, {xn}n≥1 is bounded, there exists a subsequence
{xnk

}k≥1 of {xn}n≥1 such that {xnk
}k≥1 converges weakly to some x∗ ∈ K; and since by Theorem 12 lim

n→∞
‖xn −

Tixn‖ = 0 for all i ∈ {1, 2, ...,m}, we obtain by Lemma 7 that x∗ ∈ F. We now show that {xn}n≥1 converges weakly to
x∗. Suppose for contradiction that there exists another subsequence {xns}s≥1 of {xn}n≥1 such that {xns}s≥1 converges
weakly to q∗ 6= x∗. Lemma 7 again shows that q∗ ∈ F. By Theorem 11, r1 = lim

n→∞
‖xn − x∗‖ and r2 = lim

n→∞
‖xn − q∗‖

exist, where r1 ≥ 0 and r2 ≥ 0. Then since E has weakly continuous normalized duality mapping, it follows (see e. g.
Gossez and Lami Dozo [20]) that E satisfies Opial’s condition (see Opial [30]). Thus,

r1 = lim sup
k→∞

‖xnk
− x∗‖ < lim sup

k→∞
‖xnk

− q∗‖

= r2 = lim sup
s→∞

‖xns − q∗‖ < lim sup
s→∞

‖xns − x∗‖ = r1,

a contradiction. Hence, x∗ = q∗. This implies that {xn}n≥1 converges weakly to x∗ ∈ F. This completes the proof. 2

The following corollaries easily follow from our presentation so far.

Corollary 14 Let K be a closed convex nonempty subset of a uniformly convex real Banach space with weakly con-
tinuous normalized duality mapping. Let T1, T2, ..., Tm : K → K be m uniformly L-Lipschitzian total asymptotically

nonexpansive mappings such that F :=

m⋂
i=1

F (Ti) 6= ∅. Let {xn}n≥1 be the sequence defined by (10), then {xn}n≥1

converges weakly to a common fixed point of T1, T2, ..., Tm.

Corollary 15 Let K be a closed convex nonempty subset of a uniformly convex real Banach space with weakly contin-
uous normalized duality mapping. Let T1, T2, ..., Tm : K → K be m asymptotically nonexpansive mappings such that

F :=

m⋂
i=1

F (Ti) 6= ∅. Let {xn}n≥1 be the sequence defined by (10), then {xn}n≥1 converges weakly to a common fixed

point of T1, T2, ..., Tm.

Corollary 16 Let K be a closed convex nonempty subset of a uniformly convex real Banach space with weakly continu-

ous normalized duality mapping. Let T1, T2, ..., Tm : K → K be m nonexpansive mappings such that F :=

m⋂
i=1

F (Ti) 6= ∅.

Let {xn}n≥1 be the sequence defined by (10), then {xn}n≥1 converges weakly to a common fixed point of T1, T2, ..., Tm.
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Corollary 17 Let K be a closed convex nonempty subset of a real Hilbert space H. Let T1, T2, ..., Tm : K → K be m

uniformly continuous total asymptotically nonexpansive mappings such that F :=

m⋂
i=1

F (Ti) 6= ∅. Let {xn}n≥1 be the

sequnce defined by (10), then {xn}n≥1 converges weakly to a common fixed point of T1, T2, ..., Tm.

3.3 Strong convergence of implicit iteration process.

Theorem 18 Let E be a uniformly convex real Banach space, K be a nonempty closed convex subset of E and
Ti : K → K, i = 1, 2, ...,m be m uniformly continuous total asymptotically nonexpansive mappings such that F :=
m⋂
i=1

F (Ti) 6= ∅. Let {xn} be the sequence defined by (10). Suppose that one of T1, T2, ..., Tm is compact, then {xn}

converges strongly to a common fixed point of T1, T2, ..., Tm.

Proof. We obtain from Theorem 12 that

lim
n→∞

‖Tixn − xn‖ = 0, i = 1, 2, ...,m. (41)

Let Ti0 be compact for some i0 ∈ {1, 2, ...,m}. Since Ti0 is continuous and compact, it is completely continuous. Thus,
there exists a subsequence {Ti0xnk

} of {Ti0xn} such that Ti0xnk
→ x∗ as k → ∞ for some x∗ ∈ K. Since by (41)

lim
k→∞

‖xnk
− Ti0xnk

‖ = 0, we have that lim
k→∞

xnk
= x∗. Observe that for all i ∈ I,

‖x∗ − Tix∗‖ ≤ ‖x∗ − xnk
‖+ ‖xnk

− Tixnk
‖+ ‖Tixnk

− Tix∗‖. (42)

So, we obtain from (42) that Taking limit as k → ∞ in (42) using the fact that Ti ∀ i ∈ I is continuous, we have
that x∗ = Tix

∗ ∀ i ∈ I and so x∗ ∈ F (Ti) ∀ i ∈ I. But by Theorem 11, lim
n→∞

‖xn − p‖ exists for p ∈ F . Thus,

lim
n→∞

‖xn − x∗‖ = 0. Hence, {xn} converges strongly to x∗ ∈ F. This completes the proof. 2

Corollary 19 Let E be a uniformly convex real Banach space, K be a nonempty closed convex subset of E and
Ti : K → K, i = 1, 2, ...,m be m uniformly L-Lipschitzian total asymptotically nonexpansive mappings such that

F :=

m⋂
i=1

F (Ti) 6= ∅. Let {xn} be the sequence defined by (10). Suppose that one of T1, T2, ..., Tm is compact, then {xn}

converges strongly to a common fixed point of T1, T2, ..., Tm.

Corollary 20 Let E be a uniformly convex real Banach space, K be a nonempty closed convex subset of E and

Ti : K → K, i = 1, 2, ...,m be m asymptotically nonexpansive mappings such that F :=

m⋂
i=1

F (Ti) 6= ∅. Let {xn} be the

sequence defined by (10). Suppose that one of T1, T2, ..., Tm is compact, then {xn} converges strongly to a common
fixed point of T1, T2, ..., Tm.

Corollary 21 Let E be a uniformly convex real Banach space, K be a nonempty closed convex subset of E and

Ti : K → K, i = 1, 2, ...,m be m nonexpansive mappings such that F :=

m⋂
i=1

F (Ti) 6= ∅. Let {xn} be the sequence

defined by (10). Suppose that one of T1, T2, ..., Tm is compact, then {xn} converges strongly to a common fixed point
of T1, T2, ..., Tm.

Remark 22 Though Theorem 18 holds in both real `p and Lp spaces 1 < p < +∞, Theorem 13 does not hold in Lp
spaces 1 < p < +∞, p 6= 2 since it is well known that for p 6= 2, Lp spaces do not possess weakly continuous duality
mapping (see e.g. [5]-[7]). It is thus easy to see that both Theorems 13 and 18 hold in real Hilbert spaces.
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3.4 Convergence of explicit iteration process.

Theorem 23 Let E be a real normed space, K be a nonempty closed convex subset of E and Ti : K → K, i = 1, 2, ...,m

be m total asymptotically nonexpansive mappings such that F :=

m⋂
i=1

F (Ti) 6= ∅. From arbitrary z1 ∈ E, define the

sequence {zn} by (11), then, {zn}n≥1 is bounded and for all p ∈ F , lim
n→∞

‖zn − p‖ exists.

Proof. Let p ∈ F. Then using (11), we obtain that

‖zn+1 − p‖ =
∥∥∥αn(zn − p) + (1− αn)(T

q(n)
j(n) zn − p)

∥∥∥
≤ αn‖zn − p‖+ (1− αn)

[
‖zn − p‖+ µq(n)φ(‖zn − p‖) + `q(n)

]
≤ αn‖zn − p‖+ (1− αn)

[
‖zn − p‖+ µq(n)(M +M0‖zn − p‖) + `q(n)

]
, (43)

where M is the maximum of the continuous function φ on the interval [0,M1] and M0, M1 as in Remark 10. Thus,
we obtain from (43) that

‖zn+1 − p‖ ≤
(

1 +M0µq(n)

)
‖zn − p‖+ µq(n)M + `q(n). (44)

So,

‖zn+1 − p‖ ≤
(

1 + δn

)
‖zn − p‖+ σn, (45)

where δn = M0µq(n) and σn = µq(n)M + `q(n). Observe that

∞∑
n=1

δn < +∞ and

∞∑
n=1

σn < +∞. Hence, by Lemma 6, we

have that {zn}n≥1 is bounded and lim
n→∞

‖zn − p‖ exists for all p ∈ F. This completes the proof. 2

Theorem 24 Let E be a uniformly convex real Banach space, K be a nonempty closed convex subset of E and
Ti : K → K, i = 1, 2, ...,m be m uniformly continuous total asymptotically nonexpansive mappings such that F :=
m⋂
i=1

F (Ti) 6= ∅. From arbitrary z1 ∈ E, define the sequence {zn} by (11), then, lim
n→∞

‖zn − Tizn‖ = 0, i = 1, 2, ...,m.

Proof. Let p ∈ F (T ), then from recursion formula (11), Lemma 4 and Remark 5, we get that

‖zn+1 − p‖2 =
∥∥∥αn(zn − p) + (1− αn)

(
T
q(n)
j(n) zn − p

)∥∥∥2
≤ αn‖zn − p‖2 + (1− αn)

∥∥∥T q(n)j(n) zn − p
∥∥∥2

−2αn(1− αn)C2δE

(‖zn − T q(n)j(n) zn‖
2C

)
≤ αn‖zn − p‖2 + (1− αn)

[
‖zn − p‖+ µj(n)φ(‖zn − p‖) + `j(n)

]2
−2η1(1− η2)

R2
1δE(‖zn − T q(n)j(n) zn‖/2R1)

2L∗

≤ αn‖zn − p‖2 + (1− αn)‖zn − p‖2 +Q1(µj(n) + `j(n))

−2η1(1− η2)
R2

1δE(‖zn − T q(n)j(n) zn‖/2R1)

2L∗

for some Q1 > 0, R1 > 0. This implies that

R2
1δE(‖zn − T q(n)j(n) zn‖/2R1)

2L∗
≤ 1

2η1(1− η2)

[
‖zn − p‖2 − ‖zn+1 − p‖2

+Q0(µj(n) + `j(n))
]

(46)
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Since by Theorem 23, lim
n→∞

‖zn − p‖ exists, we obtain from (46) that

lim
n→∞

M2δE(‖zn − T q(n)j(n) zn‖/2M)

2L∗
= 0 (47)

Thus, since δE is strictly increasing, continuous and δE(0) = 0 , (47) gives

lim
n→∞

||zn − T q(n)j(n) zn|| = 0. (48)

Also, from (11),

‖zn+1 − zn‖ ≤ ||zn − T q(n)j(n) zn||.

Thus,

lim
n→∞

‖zn+1 − zn‖ = 0⇔ lim
n→∞

‖zn − zn−1‖ = 0.

The rest follows as in the proof of Theorem 12. This completes the Proof. 2

Follwing the method of proof of Theorem 13 and Theorem 18, we (respectively) obtain the following theorems:

3.5 Weak convergence of explicit iteration process.

Theorem 25 Let K be a closed convex nonempty subset of a uniformly convex real Banach space with weakly con-
tinuous normalized duality mapping. Let T1, T2, ..., Tm : K → K be m uniformly continuous total asymptotically

nonexpansive mappings such that F :=

m⋂
i=1

F (Ti) 6= ∅. Let {zn}n≥1 be the sequence defined by (11), then {zn}n≥1

converges weakly to a common fixed point of T1, T2, ..., Tm.

3.6 Strong convergence of explicit iteration process.

Theorem 26 Let E be a uniformly convex real Banach space, K be a nonempty closed convex subset of E and
Ti : K → K, i = 1, 2, ...,m be m uniformly continuous total asymptotically nonexpansive mappings such that F :=
m⋂
i=1

F (Ti) 6= ∅. Let {xn} be the sequence defined by (10). Suppose that one of T1, T2, ..., Tm is compact, then {xn}

converges strongly to a common fixed point of T1, T2, ..., Tm.

Remark 27 Corollaries similar to those obtained above are also obtainable in subsections 3.5 and 3.6.

3.7 Necessary and sufficient conditions for convergence in real Banach spaces.

Using (23), (45) and following the method of proof of Theorem 3.2 of [12], we (respectively) obtain the following
theorems.

Theorem 28 Let E be a real Banach space, K be a nonempty closed convex subset of E and Ti : K → K, i =

1, 2, ...,m be m continuous total asymptotically nonexpansive mappings such that F :=

m⋂
i=1

F (Ti) 6= ∅. Suppose that

{xn} is given by (10), then the sequence {xn} converges strongly to a common fixed point of {Ti}mi=1 if and only if

lim inf
n→∞

d
(
xn, F

)
= 0, where d

(
xn, F

)
= inf
y∈F
‖xn − y‖, n ∈ N.
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Theorem 29 Let E be a real Banach space, K be a nonempty closed convex subset of E and Ti : K → K, i = 1, 2, ...,m

be m continuous total asymptotically nonexpansive mappings such that F :=

m⋂
i=1

F (Ti) 6= ∅. Suppose that {zn} is given

by (11), then the sequence {zn} converges strongly to a common fixed point of Ti, i = 1, 2, ...,m if and only if

lim inf
n→∞

d
(
zn, F

)
= 0.

Definition 30 A mapping T : K → K is said to be total asymptotically quasi-nonexpansive if F (T ) 6= ∅ and there
exist nonnegative real sequences {µn} and {ln}, n ≥ 1 with µn, ln → 0 as n → ∞ and strictly increasing continuous
function φ : R+ → R+ with φ(0) = 0 such that for all x ∈ E, x∗ ∈ F (T ),

‖Tnx− x∗‖ ≤ ‖x− x∗‖+ µnφ(‖x− x∗‖) + ln, n ≥ 1. (49)

Remark 31 If φ(t) ≡ 0, then (1) reduces to ‖Tnx − x∗‖ ≤ ‖x − x∗‖ + ln, n ≥ 1, so that if K is bounded and TN

is continuous for some integer N ≥ 1, the mapping T is of quasi asymptotically nonexpansive type which includes
the class of mappings which are quasi asymptotically nonexpansive in the intermediate sense. If φ(λ) = λ, then (49)
reduces to

‖Tnx− x∗‖ ≤ (1 + µn)‖x− x∗‖+ ln, n ≥ 1. (50)

In addition, if ln = 0 for all n ≥ 1, then total asymptotically quasi-nonexpansive mappings coincide with asymptotically
quasi-nonexpansive mappings studied by various authors. If µn = 0 and ln = 0 for all n ≥ 1, we obtain from (50)
the class of quasi-nonexpansive mappings. Observe that the class of total asymptotically nonexpansive mappings with
nonempty fixed point sets belongs to the class of total asymptotically quasi-nonexpansive mappings.

It is trivial to observe that all the Theorems of this paper carry over to the class of total asymptotically quasi-
nonexpansive mappings with little or no modifications.

A subset K of a real normed linear space E is said to be a retract of E if there exists a continuous map P : E → K
such that Px = x for all x ∈ K. A map P : E → E is said to be a retraction if P 2 = P. It follows that if a map P
ia a retraction, then Py = y for all y in the range of P. The mapping P is called a sunny nonexpansive retraction if
for all x ∈ E and t ∈ (0, 1) P ((1 − t)x + tP (x)) = P (x). If K is a nonempty closed convex subset of a Hilbert space
H, then the nearest point projection PK from H to K is the sunny nonexpansive retraction. This however is not true
for Banach spaces since nonexpansivity of projections PK characterizes Hilbert spaces. On the other hand, a sunny
nonexpansive retraction can play a similar role in a Banach space as a projection does in Hilbert spaces. For existence
of nonexpansive retracts outside Hilbert spaces, one may see [31].

Definition 32 Let K be a nonempty closed and convex subset of E. Let P : E → K be the nonexpansive retraction
of E onto K. A non-self map T : K → E is said to be total asymptotically nonexpansive if there exist sequences
{µn}n≥1, {ln}n≥1 in [0,+∞ with µn, ln → 0 as n → ∞ and a strictly increasing continuous function φ : [0,+∞) →
[0,+∞) with φ(0) = 0 such that for all x, y ∈ K,

‖T (PT )n−1x− T (PT )n−1y‖ ≤ ‖x− y‖+ µnφ(‖x− y‖) + ln, n ≥ 1.

Let T1, T2, ..., Tm : K → E be m total asymptotically nonexpansive non-self maps; assuming existence of common
fixed points of these operators, our theorems and method of proof easily carry over to this class of mappings using the
iterative sequences {xn} and {zn} defined by

x0 ∈ K, xn = P
(
αnxn−1 + (1− αn)Tj(n)(PTj(n))

q(n)−1xn

)
, n ≥ 1

and

z1 ∈ K, zn+1 = P
(
αnzn + (1− αn)Tj(n)(PTj(n))

q(n)−1zn

)
, n ≥ 1

(respectively) instead of (10) and (11) provided the well definedness of P as a sunny nonexpansive retraction is
guaranteed.
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Remark 33 We note that for the class of asymptotically nonexpansive mappings, the condition - there exist M0 > 0
and M1 > 0 such that φ(t) ≤ M0t for all t > M1- is not needed. A prototype for φ : [0,∞) → [0,∞) satisfying the
conditions of our theorems is φ(λ) = λs, 0 < s ≤ 1.

Remark 34 Addition of bounded (or the so called mean) error terms to the iteration process studied in this paper
leads to no further generalization. In fact, if we consider the sequences {xn}n≥1, {zn}n≥1 generated by

x0 ∈ K,xn = αnxn−1 + βnT
q(n)
j(n) xn + γnun, n ≥ 1, (51)

z1 ∈ K, zn+1 = αnzn−1 + βnT
q(n)
j(n) zn + γnun, n ≥ 1 (52)

(for self total asymptotically nonexpansive mappings) and the iterative sequences {xn} and {zn} defined by

x0 ∈ K, xn = P
(
αnxn−1 + βnTj(n)(PTj(n))

q(n)−1xn + γnun

)
, n ≥ 1 (53)

and

z1 ∈ K, zn+1 = P
(
αnzn + βnTj(n)(PTj(n))

q(n)−1zn + γnun

)
, n ≥ 1 (54)

(for nonself total asymptotically nonexpansive mappings), where {αn}n≥1, {βn}n≥1 and {γn}n≥1 are real sequnces in

(0, 1) such that αn+βn+γn = 1 ∀ n ≥ 1,

∞∑
n=1

γn < +∞, η1 ≤ βn ≤ η2 for some η1, η2 ∈ (0, 1ξ ) (where ξ is as defined in

Remark 10) and {un}n≥1 is a bounded sequence in K, then repeating the argument of this paper, we obtain weak and
strong convergence of (51), (52), (53) and (54) to a common fixed point of corresponding T1, T2, ..., Tm. The iteration
scheme (54) improves and generalizes the so called three step iteration scheme with error recently introduced by L.
Yang and X. Xie [25] for three nonself asymptotically nonexpansive mappings.

Remark 35 Our theorems unify, extend and generalize the corresponding results of Alber et al. [2], L. Yang and
X. Xie [25], Sahu [32], Shahzad and Udomene [33] and a host of other results recently announced (see e.g. [8]-[17],
[24, 26], [33]-[37], [38, 41, 42, 43],)for the approximation of common fixed points of finite families of several classes
of nonlinear mappings.

Remark 36 Finally, observe that the condition (5) as imposed in Theorem ZC of Zhou and Chang [45], the conditions

K +K ⊂ K,
∞∑
n=1

‖un‖ < +∞ and the boundedness condition imposed on K by Hao [21] are all dispenced with in this

paper. Our iteration schemes (10) and (51) are, therefore, far better and more efficient than the schemes (4) and
(5) respectively introduced and studied by Zhou and Chang [45] and Hao [21]. Our method of proof Theorem 24
closed the gap observed in the proof of Theorem 3.5 of [12]. Theorem 13 extends the corresponding result of Zhou
and Chang [45] from the class of asymptotically nonexpansive mappings to the class of uniformly continuous total
asymptotically nonexpansive mappings; while the corresponding result of Hao [21] is improved, generalized and extended
from real Hilbert space to uniformly convex real Banach spaces and from the class of uniformly L-Lipschitzian total
asymptotically nonexpansive mappings to the class of uniformly continuous asymptotically nonexpansive mappings.
Our explicit iteration schemes and strong convergence theorems are also of independent interest.
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