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Abstract

The wormhole solution could be found by solving the Einstein field equations with violating the null energy condition
(NEC). We represent wormhole solutions in κ(R, T ) gravity in two different ways. At first, we find the shape function
by considering a redshift function and linear equation of state (EoS). The solution represents a wormhole for the real
feasible matter. In the second part, we consider four pairs of two redshift functions and two shape functions and
analyze the obtained solutions. Some of the models suggest that for particular values of the parameters, the existence
of wormholes are supported by an arbitrarily small quantity of exotic matter.
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1 Introduction

In general relativity, one of the noteworthy features is the possible existence of hypothetical geometry consisting
nontrivial topological structure. This topological feature of space-time as the solution of Einstein’s general relativity
field equations called as wormholes. Wormhole (WH) is a hypothetical path which connects two different space-times.
In recent times it becomes a very interesting research object in theoretical Astrophysics as if traversable WH exits then
time machine can be constructed[1]. Flamm[2] has first introduced the concept of WH and discussed 2D embedding
diagram of Schwarzschild WH. Later a similar attempt has been made by Einstein and Rosen[3] and proposed the
non-traversable Schwarzschild WH solutions. Also, this doesn’t allow a two-way transmission between two different
regions of the space-time that leads to the contraction of WH throat.

The concept of Lorentzian traversable WH proposed by Morris and Thorne[4] has attracted many researchers.
In this case, the throat of WH is threaded by a variety of exotic matter which causes repulsion against the collapse
of WH throat. Due to this condition of the traversable WH, it must satisfy the flare-out condition to preserve the
geometry. Also, because of the absence of the event horizon in this traversable WH, the observers can traverse freely
from one place of the universe to another place. Morris and Thorne[4] have also found that a kind of exotic matter
is responsible for traversable WH which violates the null energy condition(NEC) and weak energy condition (WEC).
NEC is the weakest one whose violation gives rise to the violation of other energy conditions. Thus, it is a fascinating
challenge to search for a realistic model that minimize the usage of exotic matter or satisfies the energy conditions.

One of the most striking research areas over the last two decades has been the scenario of the accelerated expansion
of our universe. It is thought that the reason behind this cosmic accelerated expansion of the universe is some exotic
fluid or unidentified energy with huge negative pressure dubbed as dark energy(DE). Observational data from various
experiments such as high redshift supernovae, galaxy clustering and cosmic microwave background anisotropy support
this accelerated expansion of our universe[5, 6, 7, 8]. According to the latest observations, our universe constitutes
about 71.4% of DE, 24% dark matter and 4.6% ordinary matter. After many efforts by astronomers to find the nature
and composition of DE but till we have just known that it has some repulsive force or negative pressure. To describe
the DE, one can use the equation of state(EoS) parameter ω = p/ρ, where p and ρ denote the pressure and energy
density of the DE. Vacuum energy (ω = −1) is the most convenient explanation for the DE that can be able to push
matter apart[9], but it faces some theoretical problems like the fine tuning and cosmic coincidence.

Modified theories of gravitation are the another approaches to address the DE problem. These modified theories
can be obtained by generalizing or modifying the Einstein-Hilbert action in standard GR. This idea gives rise to various
alternative theories of gravitation like f(τ) gravity[10, 11, 12], Gauss-Bonnet gravity[13, 14], f(R) gravity[15, 16] and
f(R, T ) gravity[17] etc (where R is the curvature scalar, τ denotes the torsion scalar, T is the trace of the energy
momentum tensor). For an exhaustive study of modified gravities, the reader may see the reviews[18, 19, 20]. On
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the other hand, the models in these modified theories may overcome the violation of energy conditions and lead
to the WHs threaded by ordinary matter. Basically, in modified theories, the effective stress-energy tensor (extra
terms or modified terms) is responsible for the violation of energy conditions while ordinary matter satisfies these
conditions. Harko et al.[21] have presented theoretical WH geometries that can be obtained without the presence of
exotic matter but are validated in the context of f(R) modified gravity with higher order curvature terms. Rahaman
et al.[22] have derived some new exact solutions of static noncommutative WHs in f(R) theory of gravity supported
by the Lorentzian density distribution. Lobo and Oliveira[23] have constructed traversable WH geometries within the
framework of f(R) theories of gravity. Mehdizadeh et al.[24] have explored traversable WHs in Einstein-Gauss-Bonnet
which satisfies the WEC. Zubair et al.[25] have discussed static spherically symmetric WHs in f(R, T ) modified theory
of gravity with matter contents as isotropic, anisotropic and barotropic fluids, and shown that the WH solutions can
be obtained without exotic matter in few regions of space-time. Moraes et al.[26] have studied general solutions for
WHs with constant throat radius in f(R, T ) gravity. Sharif and Ikram[27] have studied the traversable WH solutions
in the framework of f(G) gravity (where G is the Gauss-Bonnet curvature invariant) and found that the effective
stress-energy tensor violates the NEC throughout the WH throat. Sarkar et al.[28] have discussed WH in a modified
theory of gravity in the background five dimensional KaluzaKlein cosmology. Samanta et al.[29] have presented a
comparative study of traversable WHs with exponential shape function in f(R) and f(R, T ) modified gravities and in
general relativity. Rosa et al.[30] have explored WH solutions in a generalized hybrid metric-Palatini matter theory.
Elizalde and Khurshudyan[31] have investigated WH formation in f(R, T ) gravity with radial pressure which admits
an equation of state parameter of varying Chaplygin gas. Zubair et al.[32] have studied static spherically symmetric
WHs in generalized f(R,φ) gravity. Jusuf et al.[33] have discussed the deflection of light by black holes and WHs in
the context of massive theory of gravity. Godani and Samanta [34] have obtained traversable WHs with two different
shape functions in f(R) gravity.

The field equations obtained in the above modified theories are much more complicated than those of GR and
in the process of modification some of the beauty of the original theory is also lost. In view of this, very recently,
Gines R. Perez Teruel[35] has introduced a new modified theory named as κ(R, T ) gravity. In the formulation of this
theory he doesn’t begin with the standard modified theory of gravity approach. Rather, he added the possible source
terms directly to GR field equations by following Maxwell’s and Einstein’s original approaches. In particular, κ(R, T )
gravity is based on a natural extension of GR, where the modified field equations are obtained by adding the terms
that only include the scalar curvature R and the trace T of the stress-energy tensor. So far, no one has investigated
WH solutions in the context of κ(R, T ) theory of gravity, hence it would be interesting to study WH solutions in the
framework of κ(R, T ) modified theory of gravity.

The innovation points of this work are: (i) For the choice of the redshift function and linear equation of state(EoS),
the obtained solution represents the wormhole structure with a peculiar property that the original matter distribution
is of real feasible matter and it provides the fuel to sustain the wormhole in κ(R, T ) gravity. (ii) The solutions
corresponding to four pairs of two shape functions and two redshift functions also represent the wormholes and here
some of the models suggest that for particular values of the parameters, the existence of wormholes are supported by
an arbitrarily small quantity of exotic matter.

The context has been designed as follows: In Sec. II we have described κ(R, T ) gravity and written down the
Einstein field equations in this gravity also mentioned the required conditions on the redshift and shape function to
present the wormhole structure. The shape function and the corresponding solution are analyzed by redshift function
and EoS taking into the account in Sec.III. In Sec.IV we have shown the wormhole solutions by considering different
redshift and shape functions. Finally, the discussion has been made in Sec.V.

2 Einstein’s field equations in κ(R, T ) gravity

Here, we will present a brief introduction to κ(R, T ) gravity, the corresponding field equations and required conditions
on redshift and shape functions.

Various modified theories of gravitations are proposed in view of the important degree of arbitrariness inherent
in the choice of the gravity Lagrangian. Many of these theories are so similar that it is difficult to differentiate one
from the other. The Lagrangian formalism has undoubted advantages at the level of symmetries implementation
and conservation-laws derivation, but possible theoretical alternatives to standard Lagrangian theories also deserve
consideration. In this point of view, the importance of Non-Lagrangian theories in other branches of theoretical physics
such as quantum field theory is being acknowledged in the last years. Also, these theories offer new opportunities in
the search of new types of invariants.
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Figure 1: The shape function(Left) and b(r)
r (Right) are plotted against the radial coordinate r(> the throat radius)

corresponding to m = 0.3, C = 1.

Very recently, Teruel [35] has formulated an example of a Non-Lagrangian modified theory of gravitation, namely
κ(R, T ) gravity, inspired by Maxwell’s approach to Electrodynamics, adding new possible source terms directly in the
field equations. The field equations in κ(R, T ) modified gravity are obtained by adding new possible source terms
directly to GR field equations as[35]

Rij −
1

2
Rgij − Λgij = κ(R, T )Tij (1)

where gij is the metric potential, Rij is the Ricci tensor, Λ is a cosmological constant, Tij is the energy-momentum
tensor of the matter source, and κ(R, T ) corresponds to the Einstein gravitational constant and it is proposed as a
function of the traces T = gijT

ij , and Ricci scalar R = gijR
ij . Clearly, the gravitational constant κ depends on

the scalars, so we can explore the possibility of a varying gravitational constant, i.e. generalization of the original
Einstein’s gravitational constant (not at the level of an action functional). A varying gravitational constant in the
action leads to a Brans-Dicke scalar-tensor theory type[36, 37] with entirely different field equations from Eq.(1). Since
the left hand side of the field Eq.(1) is divergence free, we have

∇j (κ(R, T )Tij) = 0 (2)

Then, these field equations imply the non-covariant conservation of Tij that can be expressed as

∇jTij = −∇
jκ(R, T )

κ(R, T )
Tij . (3)

Teruel[35] has proposed and analyzed some cosmological implications of two particular models. The first one is pro-
posed by setting, κ(T ) = 8πG−λT , and corresponds to a matter-matter coupling. The second model is characterized
by a gravitational constant that varies as κ

′
(R) = 8πG + αR, which will provide a coupling between matter and

curvature terms.
Let us consider a Morris-Thorne wormhole, which is represented by a static spherically symmetric metric in

Schwarzschild co-ordinate (t, r, θ, φ) as

ds2 = e2f(r)dt2 −
(

1− b(r)

r

)−1
dr2 − r2(dθ2 + sin2θdφ2) (4)

where f(r) and b(r) are the functions of the radial coordinate r, called redshift function and shape function,
respectively. The minimum radius r = r0 in the metric coefficient grr is termed as the throat radius of the wormhole,
where b(r0) = r0 . Also, the absence of the event horizon is required for a traversable wormhole.
Therefore, to represent a wormhole structure the redshift and shape functions must satisfy the following conditions[38]
:

9

http://purkh.com/index.php/tophy


To Physics Journal Vol 2 (2019) http://purkh.com/index.php/tophy

Figure 2: db(r)
dr (Left) and the original matter density(Right) are are plotted against the radial coordinate r(> the

throat radius) corresponding to m = 0.3, C = 1 and m = 0.3, C = 1, a = 0.02, respectively.

(i) For avoiding an event horizon the redshift function f(r) should be finite.

(ii) The shape function b(r) should satisfy the flare-out condition at the throat r = r0 i.e. b′(r0) < 1.

(iii) b(r) should be less than r for r > r0.

(iv) The shape function should be asymptotically flat i.e. b(r)
r → 0 as r→∞

To know the nature of matter that may support the wormhole we need to solve the Einstein field equations. The
Einstein field equations in κ(R, T ) gravity for the line element(4) along with Λ = 0 and κ(R, T ) = 8π−λT (G = c = 1)
are:

8πρ(r) [1− a(ρ(r)− 3p(r))] =
b′(r)

r2
(5)

8πp(r) [1− a(ρ(r)− 3p(r))] =
2f ′(r)

r

(
1− b(r)

r

)
− b(r)

r3

(6)

where ”′” denotes the derivative with respect to the radial coordinate r. ρ(r), p(r) are the matter density and
pressure of the original matter configuration, respectively and a = λ

8π is non zero constant.
The effective density and pressure of the effective matter configuration are given by

ρe(r) = ρeffective(r) = 8πρ(r) [1− a(ρ(r)− 3p(r))] (7)

pe(r) = peffective(r) = 8πp(r) [1− a(ρ(r)− 3p(r))] (8)

One can easily note that there is two independent field equations(5)-(6) of four unknowns ρ(r), p(r), f(r) and b(r) and
hence it is difficult to find the exact expressions of ρ(r), p(r) in terms of the radial coordinate r only. Therefore, in the
next section, we will proceed to solve this system of equations accurately by assuming a linear equation of state(EoS)
and a redshift function.

3 Wormhole Solution

To obtain the exact solutions of Einstein’s field equation in the framework of κ(R, T ) gravity we can proceed as follows
:
From Eqs. (5)- (6) we get

ρ(r)

p(r)
=

b′(r)
r2

2f ′(r)
r

(
1− b(r)

r

)
− b(r)

r3

(9)
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Figure 3: The sum of original matter density and pressure(Left) and The sum of effective matter density and pres-
sure(Right) are plotted against the radial coordinate r(> the throat radius) corresponding to m = 0.3, C = 1, a = 0.02.

Now, we consider a redshift function f(r) = A(a constant), where A being a constant avoids the event horizon
and linear equation of state(EoS) p(r) = mρ(r), where m is a constant satisfying 0 < m < 1 for the real matter
configuration. Later we will provide a restriction on m as m 6= 1

3 for our solution. For these EoS and redshift function,
Eq.(9) yields

b′(r) +
1

mr
b(r) = 0 (10)

The differential Eq.(10) gives the following shape function

b(r) = Cr−
1
m (11)

where C is an integration constant.
From the equation b(r0) = r0 we get the throat radius of the wormhole as r0 = C

m
m+1 . For the choice of C = 1,

the throat radius of the wormhole is r0 = 1. Also, we provide some graphical representations to get an overview of
the obtained shape function as well as the conditions that need to satisfy for the existence of wormhole structure.
Fig.1 shows the positive and decreasing behavior of the shape function with respect to the radial coordinate r(Left)

and the right plot of Fig.1 presents the behavior of the ratio function b(r)
r , which shows that b(r)

r tends zero for large
values of the radial coordinate r and hence the shape function satisfies the asymptotic behavior. Also, the shape
function satisfies the flare out condition, (see Fig.2 (Left)). Consequently, our obtained shape function is well-behaved
to present a wormhole structure.

Therefor, we obtain a wormhole representing line element as:

ds2 = e2Adt2 −
(

1− Cr−
m+1
m

)−1
dr2 − r2(dθ2 + sin2θdφ2) (12)

Now, we obtain the expression of original matter density from Eq. (5) using Eq.(11) and the EoS as:

ρ(r) =
1

2a(1− 3m)

[
1±

√
1 +

aC(1− 3m)

2πm
r−( 3m+1

m )

]
(13)

with m 6= 1
3 .

For further study, we consider the following expression of ρ(r):

ρ(r) =
1

2a(1− 3m)

[
1 +

√
1 +

aC(1− 3m)

2πm
r−( 3m+1

m )

]
(14)
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Figure 4: The shape function(Left) and b(r)
r (Right) are plotted against the radial coordinate r(≥ the throat radius)

corresponding to β = r0 = 1.5 and n = 0.1, 0.3, 0.6, 0.9.

Actually, we are interested to find the original matter as the real feasible matter configuration. For this purpose, we
have taken one expression of ρ(r) given in above Eq.(14). The original matter configuration becomes the exotic matter
for another expression of ρ(r).
Therefore, we obtain the following expressions

ρ(r) + p(r) =
(1 +m)

2a(1− 3m)

[
1 +

√
1 +

aC(1− 3m)

2πm
r−( 3m+1

m )

]
(15)

and

ρe(r) + pe(r) =
8π(1 +m)

2a(1− 3m)

[
1 +

√
1 +

aC(1− 3m)

2πm
r−( 3m+1

m )

][
1− 1

2

{
1 +

√
1 +

aC(1− 3m)

2πm
r−( 3m+1

m )

}]
(16)

It is well-known that the exotic matter is necessary to hold a wormhole structure and the exotic matter is charac-
terized by the violation of null energy condition(NEC). The energy conditions are defined as:

(i) The weak energy condition(WEC): TαβU
αUβ ≥ 0 i.e. ρ(r) ≥ 0 and ρ(r) + p(r) ≥ 0, where Tαβ is the energy

momentum tensor with Uα being a timelike vector.

(ii) The null energy condition(NEC): Tαβυ
αυβ ≥ 0 i.e. ρ(r) + p(r) ≥ 0 and for the modified matter configuration

ρe(r) + pe(r) ≥ 0, with υα being a null vector.

The density ρ(r) of the original matter configuration is positive against the radial coordinate r (see Fig.2 (Right)).
The original matter distribution satisfies the week energy condition(WEC) (ρ(r) ≥ 0, ρ(r) + p(r) ≥ 0) as well as
the null energy condition(NEC) (ρ(r) + p(r) ≥ 0) (see Fig.2(Right) and Fig.3(Left)) and hence the original matter
distribution is of real feasible matter while the right plot of Fig.3 shows that ρe(r) + pe(r) is negative i.e. the modified
matter violates the null energy condition(NEC). Thus, we obtain an interesting result that a real feasible matter
distribution will provide the fuel to construct and sustain a wormhole in κ(R, T ) gravity.

4 Wormhole solution with specific redshift and shape functions

In this section, we will examine the existence of the wormhole structures by considering four pairs of two redshift
functions and two shape functions into the account. One of the most important factor to measure the amount of
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Figure 5: db(r)
dr (Left) and the original matter density(Right) are plotted against the radial coordinate r(≥ the throat

radius) corresponding to β = r0 = 1.5, n = 0.1, 0.3, 0.6, 0.9 and β = r0 = 1.5, a = 0.02, n = 0.1, 0.3, 0.6, 0.9,
respectively.

exotic matter need to form a wormhole is ”volume integral quantifier”, which is defined as:

Iv =

∫
{ρ(r) + p(r)}dV (17)

where dV is the volume element, given by dV = r2 sin θdrdθ. One can note that the volume integral quantifier Iv →
0 if ρ(r) + p(r) → 0 and this reveals that an arbitrarily small amount of exotic matter is responsible to construct a
wormhole[38]. Using this property later we will show that an infinitesimal exotic matter is sufficient to construct the
wormholes.
Now, Eqs. (5) and (6) are the quadratic equations in ρ(r) and p(r), respectively. So, these equations give two different
expressions for ρ(r) and p(r). After solving Eqs.(5)-(6) we obtain the general expressions of ρ(r) and p(r) in term of
the redshift and shape functions as:

ρ(r) =
b′(r)

[
2πr2b(r)(1 + 2rf ′(r))− 4πr4f ′(r)±

√
2πr(b(r)− 2r2f ′(r) + 2b(r)rf ′(r))2f1

]
4πar[r(b′(r)− 6rf ′(r)) + b(r)(3 + 6rf ′(r))][b(r)− 2r2f ′(r) + 2rbf ′(r)]

(18)

p(r) =
4πr4f ′(r)− 2πr2b(r)(1 + 2rf ′(r))∓

√
2πr(b(r)− 2r2f ′(r) + 2b(r)rf ′(r))2f1

4πar2[r(b′(r)− 6rf ′(r)) + b(r)(3 + 6rf ′(r))]
(19)

whereas

f1 = r(2πr2 − ab′(r) + 6arf ′(r))− 3b(a+ 2arf ′(r))

Therefore, anyone can easily discuss the nature of the matter configuration by finding the density ρ(r) and pressure
p(r) from Eqs.(20)-(21) for the arbitrary choice of redshift and shape functions in κ(R, T ) gravity.
For further study we consider

ρ(r) =
b′(r)

[
2πr2b(r)(1 + 2rf ′(r))− 4πr4f ′(r)−

√
2πr(b(r)− 2r2f ′(r) + 2b(r)rf ′(r))2f1

]
4πar[r(b′(r)− 6rf ′(r)) + b(r)(3 + 6rf ′(r))][b(r)− 2r2f ′(r) + 2rbf ′(r)]

(20)

p(r) =
4πr4f ′(r)− 2πr2b(r)(1 + 2rf ′(r)) +

√
2πr(b(r)− 2r2f ′(r) + 2b(r)rf ′(r))2f1

4πar2[r(b′(r)− 6rf ′(r)) + b(r)(3 + 6rf ′(r))]
(21)

because the other expressions are not well-behaved for our models.
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Figure 6: The sum of original matter density and pressure(Left) and the sum of effective matter density and
pressure(Right) are plotted against the radial coordinate r(≥ the throat radius) corresponding to β = r0 = 1.5,
a = 0.02, n = 0.1, 0.3, 0.6, 0.9 and β = r0 = 1.5, n = 0.1, 0.3, 0.6, 0.9, respectively.

4.1 The shape function b(r) = β
(
r
β

)n
Here, we consider the shape function b(r) = β

(
r
β

)n
[39] to analyze the solutions with respect to two different redshift

functions, separately. The throat radius of the wormhole is r0 = β where β
(
r0
β

)n
= r0. The shape function is

positive and increasing in nature, shown in Fig.4(Left). The Fig.4(Right) ensures that b(r)
r tends to zero for the large

values of the radial coordinate r i.e. the shape function has asymptotic behavior. It is obvious from Fig.5(Left) that
b′(r ≥ r0) < 1 for n < 1 i.e. the shape function satisfies the flare-out condition for n < 1.
Next, we will discuss the solutions for the above shape function along with two different redshift functions, separately.

Figure 7: The original matter density(Left) and The sum of original matter density and pressure(Right) are plotted
against the radial coordinate r(≥ the throat radius) corresponding to β = r0 = 1.5, a = 0.02, α = 0.01 and
n = 0.1, 0.3, 0.6, 0.9.
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4.1.1 The redshift function f(r) = 0

The constant redshift function f(r), known as the tidal force solution is always admissible as the constant redshift
function is finite and avoids the event horizon.

For the tidal force solution and above shape function, Eqs.(20)-(21) yields the expressions of original matter density
ρ(r) and pressure p(r) as:

ρ(r) =
n

4πar2(3 + n)

[
2πr2 −

√
2πr

{
2πr3 − a(3 + n)β

(
r

β

)n}]
(22)

p(r) = − 1

4πar2(3 + n)

[
2πr2 −

√
2πr

{
2πr3 − a(3 + n)β

(
r

β

)n}]
(23)

Therefore,

ρ(r) + p(r) =
n− 1

4πar2(3 + n)

[
2πr2 −

√
2πr

{
2πr3 − a(3 + n)β

(
r

β

)n}]
(24)

Also, from Eqs.(7) and (8) we obtain

ρe(r) =
nβ
(
r
β

)n
r3

(25)

pe(r) = −
β
(
r
β

)n
r3

(26)

and hence

ρe(r) + pe(r) = (n− 1)
β
(
r
β

)n
r3

(27)

To check the behavior of the obtained original matter density ρ(r) and the null energy condition(NEC) we draw
the graphs for ρ(r) and ρ(r) + p(r) and ρe(r) + pe(r) against the radial coordinate r in Figs.5(Right)-6. The right
sketch of Fig.5 shows the positive behavior of the original matter density with respect to the radial coordinate r and
Fig.6 indicates that ρ(r) + p(r) < 0 and ρe(r) + pe(r) < 0 i.e. the original matter distribution as well as the modified
matter distribution in κ(R, T ) gravity both violate the null energy condition(NEC) and hence there exists a wormhole
structure supported by the matter configuration in κ(R, T ) gravity. Moreover, from Eq.(24) it is clear that ρ(r) + p(r)
tends to zero when n tends to unity i.e. the volume integral quantifier Iv tends to zero when n tends to unity. So, an
infinitesimal amount of exotic matter is sufficient to hold a wormhole.

4.1.2 The redshift function f(r) = α
r .

The shape function f(r) = α
r is always finite for r ≥ r0, where α is constant and hence this redshift function avoids

the event horizon. Therefore, from Eqs.(20)−(21) we get the expressions for ρ(r) and p(r) as:

ρ(r) = nβ

(
r

β

)n [
2πr3

{
2α+ β

(
r

β

)n}
− 4παr2β

(
r

β

)n
− f4

] [
4πar

{
2αr + (r − 2α)β

(
r

β

)n}
f5

]−1
(28)

p(r) = − 1

4πar2f5

[
2πr3

{
2α+ β

(
r

β

)n}
− 4παr2β

(
r

β

)n
− f4

]
(29)

Therefore,

ρ(r) + p(r) =

[
2πr3

{
2α+ β

(
r

β

)n}
− 4παr2β

(
r

β

)n
− f4

] [
rnβ

(
r

β

)n
−
{

2αr + (r − 2α)β

(
r

β

)n}]
[
4πar2

{
2αr + (r − 2α)β

(
r

β

)n}
f5

]−1
(30)

(31)
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Figure 8: The sum of effective matter density and pressure(Left) and the shape function(Right) are plotted against the
radial coordinate r(≥ the throat radius) corresponding to β = r0 = 1.5, α = 0.01, n = 0.1, 0.3, 0.6, 0.9 and γ = r0 = 1.5
and δ2 = 0.1, 0.3, 0.6, 0.9, respectively.

whereas

f4 =

{
2αr + (r − 2α)β

(
r

β

)n}√
2π(2πr4 − af5)

f5 = r

[
6α+ (3 + n)β

(
r

β

)n]
− 6αβ

(
r

β

)n
(32)

Also, from Eqs.(7)−(8) we get the following result

ρe(r) =
nβ
(
r
β

)n
r3

(33)

pe(r) = −
2αr + (r − 2α)β

(
r
β

)n
r4

(34)

and hence

ρe(r) + pe(r) =
[2α+ r(n− 1)]β

(
r
β

)n
− 2αr

r4

(35)

Fig.7(Left) shows the positive and decreasing behavior of original matter density ρ(r). The matter configuration in
κ(R, T ) gravity violates the null energy condition(NEC), clear from Figs.7(Right)-8(Left) and these confirm that the
solution supports a wormhole structure. Moreover, from Eq.(31) we can see that ρ(r) + p(r) tends to zero whenever
n tends to unity. Therefore, in this case, also an arbitrarily small amount of exotic matter is responsible to construct
a wormhole design.

4.2 The shape function b(r) = γ
{
1 + δ2

(
1− γ

r

)}
.

we consider another form of the shape function b(r) = γ
{

1 + δ2
(
1− γ

r

)}
[39] where γ, δ are constants. The throat

radius of the wormhole is obtained as r0 = γ by using γ
{

1 + δ2
(

1− γ
r0

)}
= r0. The shape function is positive

and increasing in nature (see Fig.8(Right)) and it has asymptotic behavior (see Fig.9(Left)). The shape function also
satisfies the flare-out condition, shown in Fig.(9)(Right) provided δ2 < 1.
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Figure 9: b(r)
r (Left) and db(r)

dr (Right) are plotted against the radial coordinate r(≥ the throat radius) corresponding
to γ = r0 = 1.5 and δ2 = 0.1, 0.3, 0.6, 0.9.

Here, we take the same two redshift functions f(r) = 0 and f(r) = α
r to analyze the corresponding solutions, separately.

Therefore, in similar way, we obtain the following expressions for these sets of redshift and shape functions:

ρ(r) =
2πγδ2r2 + γδ2

√
2π [2πr4 − aγ {3r(1 + δ2)− 2γδ2}]

4πar2 {3r(1 + δ2)− 2γδ2}
(36)

p(r) = −
[2πγδ2r2 + γδ2

√
2π [2πr4 − aγ {3r(1 + δ2)− 2γδ2}]]{r + (r − γ)δ2}

4πar2γδ2 {3r(1 + δ2)− 2γδ2}
(37)

ρ(r) + p(r) =

{
2πγδ2r2 + γδ2

√
2π [2πr4 − aγ {3r(1 + δ2)− 2γδ2}]

4πar2 {3r(1 + δ2)− 2γδ2}

}{
1−

[
r + (r − γ)δ2

]
γδ2

}
(38)

ρe(r) =
(δγ)2

r4
(39)

pe(r) = −
γ
{

(1 + δ2)r − γδ2
}

r4
(40)

ρe(r) + pe(r) = −
γ
{

(1 + δ2)r − 2γδ2
}

r4
(41)

And

ρ(r) =
γ2δ2

[
f6 −

{
2αγ2δ2 + r2(2α+ γ + γδ2)− rγ(γδ2 + 2α+ 2αδ2)

}√
2πr(2πr5 − af7)

]
4aπr2 {2αγ2δ2 + r2(2α+ γ + γδ2)− rγ(γδ2 + 2α+ 2αδ2)} f7(r)

p(r) = −
f6 −

{
2αγ2δ2 + r2(2α+ γ + γδ2)− rγ(γδ2 + 2α+ 2αδ2)

}√
2πr(2πr5 − af7)

4aπr3f7
(42)

ρ(r) + p(r) =

{
f6 −

{
2αγ2δ2 + r2(2α+ γ + γδ2)− rγ(γδ2 + 2α+ 2αδ2)

}√
2πr(2πr5 − af7)

4aπr2f7

}

×
{

γ2δ2

2αγ2δ2 + r2(2α+ γ + γδ2)− rγ(γδ2 + 2α+ 2αδ2)
− 1

r

}
(43)

ρe(r) =
(γδ)2

r4
(44)

pe(r) =
rγ2δ2 − 2α

{
r2 − γ(r + δ2 − γδ2)

}
− r2γ − r2γδ2

r5
(45)
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Figure 10: The original matter matter density(Left) and the sum of original matter density and pressure(Right)
are plotted against the radial coordinate r(≥ the throat radius) corresponding to γ = r0 = 1.5, a = 0.02 and
δ2 = 0.1, 0.3, 0.6, 0.9.

ρe(r) + pe(r) =
2rγ2δ2 − 2α

{
r2 − γ(r + δ2 − γδ2)

}
− r2γ − r2γδ2

r5

(46)

whereas

f6 = 2πr3(2r2α+ r2γ − 2rαγ + r2γδ2)− 4πr4αγδ2 − 2πr4γ2δ2 + 4παγ2δ2r3

f7 = 6αγ2δ2 + 3r2(2α+ γ + γδ2)− 2rγ(γδ2 + 3α+ 3αδ2)

(47)

Figure 11: The original matter matter density(Left) and the sum of original matter density and pressure(Right) are
plotted against the radial coordinate r(≥ the throat radius) corresponding to γ = r0 = 1.5, a = 0.02, α = 0.01 and
δ2 = 0.1, 0.3, 0.6, 0.9.

In similar argument, anyone can notice that the obtained solutions for the shape function b(r) = γ
{

1 + δ2
(
1− γ

r

)}
along with the redshift functions f(r) = 0 and f(r) = α

r represent the wormhole structures by violating the null
energy condition(NEC), separately (see Figs.10(Right),11(Right) and 12). Moreover, the original matter densities are
positive and decreasing against the radial coordinate r, clear from Figs.10(Left)-11(Left). Finally, we can easily see
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Figure 12: The sum of effective matter density and pressure(Left) and the sum of effective matter density and
pressure(Right) are plotted against the radial coordinate r(≥ the throat radius) corresponding to γ = r0 = 1.5,
δ2 = 0.1, 0.3, 0.6, 0.9 and γ = r0 = 1.5, α = 0.01, δ2 = 0.1, 0.3, 0.6, 0.9, respectively.

from Eqs.(38) and (43) that ρ(r) + p(r) does not tends to zero for any numerical values of δ and hence there are no
possibility to exist the infinitesimal exotic matters that may support the wormholes for these solutions.

5 Results and Discussions

In this article, we have found wormholes supporting solutions of the Einstein field equations in the framework of
κ(R, T ) gravity. We have obtained the solutions into two different ways: (i) The solution is obtained by considering a
redshift function and a linear equation of state(EoS) and (ii) The solutions are obtained by considering four pairs of
two redshift functions and two shape functions.
In the first part, we have taken a redshift function f(r) = A, A is constant and a linear equation of state (Eos)
p(r) = mρ(r), where m is a constant along with the restriction 0 < m < 1 and m 6= 1

3 . These redshift function and
EoS taking into account we have determined the shape function and the obtained shape function is positive, decreasing
in nature and satisfied the flare-out condition along with the asymptotic behavior (see Figs.1-2(Left)). Therefore, the
shape function satisfied all the necessary conditions to construct a wormhole design and consequently this shape
function constructs a wormhole like geometry. The obtained original matter density is positive and decreasing in
nature, also the original matter configuration satisfied the weak energy condition(WEC) i.e. ρ(r) ≥ 0, ρ(r) + p(r) ≥ 0
as well as the null energy condition(NEC) i.e. ρ(r) + p(r) ≥ 0 whereas the modified matter violates the null energy
condition(NEC) i.e. ρe(r) + pe(r) < 0), shown in Figs.2(Right)-3. Thus, we have obtained a peculiar result that the
original matter distribution is the real feasible matter, which provides the fuel to construct and sustain a wormhole
in κ(R, T ) gravity.
Secondly, we have considered four pairs of two different redshift functions and two different shape functions. Both
the shape functions are positive, increasing and satisfied all the conditions to present the wormhole structures, shown

in Figs.4, 5(Left), 8(Right) and 9. The solutions corresponding to the shape function b(r) = β
(
r
β

)n
and redshift

functions f(r) = 0, f(r) = α
r violate the null energy condition, separately, clear from Figs.6, 7(Right) and 8(Left)

i.e. the solutions representing matter distributions hold the wormhole structures in κ(R, T ) gravity. Moreover, an
arbitrarily small amount of exotic matter is responsible to construct a wormhole design for these solutions. Also, the
matter distributions represented by the solutions corresponding to the shape function b(r) = γ

{
1 + δ2

(
1− γ

r

)}
and

redshift functions f(r) = 0, f(r) = α
r retain the wormhole structures by violating the null energy condition(NEC)

(see Figs.10(Right), 11(Right) and 12), separately but there are no possibility to exist the infinitesimal exotic matters
that may support the wormholes.

Now it will be very interesting to present a comparative analysis with the other WH works in modified theories
of gravitation. Godani and Samanta [34] have investigated the traversable WHs and energy conditions within the

framework of f(R) modified theory gravity. They have used the shape function of the form b(r) = β
(
r
β

)n
, and they
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have found that the energy density is positive and all energy conditions are violated which supports the existence of
WHs. On the other hand, Samanta et al. [29] have presented the WHs with exponential shape function within the
framework of f(R) gravity. They have concluded that the WH may not contain same type of matter for all values of
r and it is filled some abnormal type of matter, which is may be called as dark energy. But, in our case, the WHs in
κ(R, T ) gravity violates the energy conditions for all values of r and WH contains same type of matter. Hence, our
results are coincide with the results obtained by Godani and Samanta [34].
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